
Fast and Efficient Equivalence Checking based on NAND-BDDs

Rolf Drechsler Mitch Thornton

Institute of Computer Science Elec. and Computer Engineering
University of Bremen Mississippi State University

28359 Bremen, Germany Mississippi State, Mississippi
drechsle@informatik.uni-bremen.de mitch@ece.msstate.edu

Abstract

Ordered Binary Decision Diagrams (BDDs) are a data
structure commonly used for the representation and ma-
nipulation of Boolean functions as used in VLSI CAD ap-
plications. BDDs are used in many equivalence checking
tools due to their canonicity. Typically, BDD packages are
based on ITE synthesis operations. By restricting the ITE-
based packages to a single operation (in this example, the
Boolean NAND) simplification of the implementation of the
software often results in a speedup of the BDD construction
process. Experiments show that significant improvements
in terms of runtime can be achieved. In some cases more
than a 95% increase in runtime improvement is noted.

1 Introduction

Decision Diagrams (DDs) are often used in VLSI CAD
systems for efficient representation and manipulation of
Boolean functions. The most popular data structures are
ordered Binary Decision Diagrams (BDDs) [2, 3]. They
have been used in various applications due to their canoni-
cal representation and ease of manipulation. Particularly in
the case of formal verification, BDDs have been integrated
into a large number of tools used to date [4, 10, 5]. BDD
packages are based on recursive operations that make use
of a three operand function commonly known as ITE [1].
For details on the efficient implementation of BDD pack-
ages see [1, 9, 12].

Most BDD packages allow for many types of syn-
thesis operations such as AND and OR; however, vari-
able substitution and quantification operations which are
used extensively in sequential equivalence checking are
also included. On the contrary, for Combinational Equiv-
alence Checking (CEC), it is only necessary to deter-
mine whether two given circuit implementations realize the
same Boolean function. Many of the operations included in
standard packages are not used for CEC applications. The

check for combinational function equivalence needs to be
performed very fast since, if CEC is applied to large de-
signs, it is often the case that several million comparisons
are carried out. In such comparisons no dynamic variable
ordering (as proposed in [11]) is invoked since this often
can become very time consuming and slows down the over-
all CEC verification process. For an overview of the gen-
eral verification flow of an equivalence checker see [8].

A BDD package is presented that is tuned for fast and
efficient CEC. Instead of using the three-operand ITE op-
eration, the basic synthesis algorithm is the two-operand
Boolean NAND. This simplifies the implementation of the
software and also has advantages regarding the hit rate of
the computed table. The package does not free nodes once
they are allocated and also does not support dynamic vari-
able reordering. The implementation is kept as simple as
possible to allow a very fast operation. Experiments show
that significant improvement over ITE based packages can
be observed, i.e. up to a 95% reduction in runtime, while
the memory consumption as measured in the number of
nodes allocated only increases slightly.

This paper is structured as follows: In Section 2 BDDs
are defined and the ITE operator is briefly reviewed.
NAND-BDDs are introduced in Section 3 and differences
with respect to the ITE operator are discussed. Experi-
ments are presented in Section 4. Finally, the results are
summarized.

2 Preliminaries

A brief definition of BDDs and a review of the ITE opera-
tion is presented to provide context for the presentation of
the NAND based implementation as described here.

2.1 Binary Decision Diagrams

As is well-known a Boolean function f : B
n ! B can be

represented by a Binary Decision Diagram (BDD) which



ite(F,G,H) f
if (terminal case) return result;
if (computed-table entry (F,G,H) exists) return result;

let xi be the top variable of fF,G,Hg;

THEN = ite(Fxi
; Gxi

; Hxi
) ;

ELSE = ite(Fxi
; Gxi

; Hxi
) ;

if (THEN == ELSE) return THEN;

// Find or create a new node with variable v and sons THEN and ELSE
R = Find or add unique table(xi,THEN,ELSE);

// Store computation and result in computed table
Insert computed table(fF,G,Hg,R);

return R;
g

Figure 1: ITE-algorithm

is a directed acyclic graph where a Shannon decomposition

f = xifxi=0
+ xifxi=1

(1 � i � n)

is carried out in each node.
A BDD is called ordered if each variable is encountered

at most once on each path from the root to a terminal node
and if the variables are encountered in the same order on all
such paths. A BDD is called reduced if it does not contain
isomorphic subgraphs nor does it have redundant nodes.
Reduced and ordered BDDs are a canonical representation
since for each Boolean function the BDD is uniquely spec-
ified.

For functions represented by reduced and ordered
BDDs efficient manipulations are possible [2]. In the fol-
lowing, only reduced and ordered BDDs are considered
and for brevity these graphs are called BDDs.

2.2 If-Then-Else Operation

A brief description of the typical synthesis operation em-
ployed in most BDD software packages is given here. The
synthesis of a BDD F depending on some Boolean rela-
tion between two existing BDDs G and H is carried out by
performing a recursive call on subgraphs. A sketch of the
recursive If-Then-Else (ITE) algorithm from [1] is given in
Figure 1.

The ite function can be considered to be a function-
ally complete three-input logic gate that implements the

expression, ite = F � G + F � H . Using this relation, the
BDD APPLY operation can be implemented with any ar-
bitrary Boolean operation as an argument. The computed
table stores previously computed results and the three ar-
guments are pointer values to F , G and H . Therefore, if
the synthesis operation has been previously computed, fur-
ther recursions are unnecessary as the computed result in
the cache is simply passed back. The addition of the cache
structure to BDD package implementations is well known
to significantly reduce runtime in the synthesis of a BDD
(see e.g. [7]).

3 NAND-BDDs

In the approach considered here the synthesis algorithm is
restricted to one operation only, the Boolean NAND. The
resulting algorithm is shown in Figure 2. As can be seen,
the overall flow is exactly the same as for the ITE algo-
rithm; however, only two instead of three operands are re-
quired. This improves the hit rate of the computed table
and also reduces its’ size.

It is noted that a restriction to other operators such as the
Boolean NOR can also be used analogously. In addition,
the use of a few operators is possible using different com-
puted tables for each of them. For simplicity, the prototype
software described here is restricted to use only the NAND
function.

It is well known that the NAND operation (f � g) is suf-



NAND(F,G) f
if (terminal case) return result;
if (computed-table entry (F,G) exists) return result;

let xi be the top variable of fF,Gg;

THEN = NAND(Fxi
; Gxi

) ;
ELSE = NAND(Fxi

; Gxi
) ;

if (THEN == ELSE) return THEN;

// Find or create a new node with variable v and sons THEN and ELSE
R = Find or add unique table(xi,THEN,ELSE);

// Store computation and result in computed table
Insert computed table(fF,Gg,R);

return R;
g

Figure 2: NAND-algorithm

ficient to realize all possible Boolean functions of 2 vari-
ables. For completeness the list of all possible operations
is given in Table 1. For readability of the table the negation
operation is still allowed since it can easily be mapped to

a = NAND(a; a) = NAND(a; 1):

The current implementation described here does not use
complemented edges (see [1, 9]). This can be integrated
directly and would likely lead to a further reduction of run-
time and memory requirements.

The realization of the package described here is based
on the principle that all operations that are not relevant for
the computation of the BDD are avoided. This allows for
no processing time overhead to be expended for a CEC ap-
plication that would otherwise be present if a general pur-
pose BDD package were employed. Due to this approach,
the technique described here is not a “full” BDD package
since other features are missing. In particular, it is noted
that the following features are not included.

Dynamic Variable Ordering (DVO):
Variable re-ordering is a very effective technique for
reducing the number of nodes in BDDs. In terms of
fast CEC applications, DVO can become very time
consuming. By avoiding this feature the implementa-
tion is simplified significantly and additional runtime
is not expended in an attempt to reduce the size of a
BDD.

Memory management: Nodes are only allocated and are
never freed during a comparison run. Therefore, no
garbage collection is carried out. The advantage is
that the package is very memory efficient since no ref-
erence count [1] needs to be stored or updated. The
number of nodes that are created is a fixed quantity
which, if exceeded, simply causes the package to re-
turn with an “insufficient memory” error.

The lack of inclusion of these features actually has the
advantage that the package only performs operations that
are relevant for constructing a BDD as fast as possible and
within specified memory limits. In practice it is better to
get a fast result so that the BDD approach to CEC does not
give a solution when the maximum allowable node count is
exceeded rather than wasting an excessive amount of run-
time that could be better used by other CEC techniques
based on principles such as SAT-solvers or term re-writing.

3.1 ITE vs. NAND

In this section the main differences between NAND-BDDs
and standard implementations based on ITE operations are
compared.

� NAND-BDDs are easier to implement. This results
from the simplicity of the synthesis operation and the
fact that DVO and memory management is not sup-
ported. This also results in simplification of debug-
ging the code.



Table 1: Realization of operators by NAND

function name expression NAND-call
0000 0 0 0

0001 AND f � g NAND(NAND(f; g); 1)

0010 f > g f � g NAND(NAND(f; g); 1)

0011 f f f

0100 f < g f � g NAND(NAND(f; g); 1)

0101 g g g

0110 XOR f � g NAND(NAND(a; b); NAND(a; b))

0111 OR f + g NAND(f; g)

1000 NOR f + g NAND(NAND(f; g); 1)

1001 XNOR f � g NAND(NAND(NAND(a; b); NAND(a; b)); 1)

1010 NOT g g

1011 f � g f + g NAND(f; g)

1100 NOT f f

1101 f � g f + g NAND(f; g)

1110 NAND f � g NAND(f; g)

1111 1 1 1

� Usually more nodes are allocated since the mapping
to NAND only results in more synthesis operation
calls; however, memory is also saved by avoiding the
reference count function and the reduction of the com-
puted table size due to two instead of three operands.

� Only two operands are used in the synthesis opera-
tion. This improves the hit-rate in the computed table.
Since the computed table is the key to fast BDD al-
gorithms [7], this has a direct impact on the overall
performance of the BDD software.

� NAND-BDDs are useful for fast CEC and in this
sense they are not a “full” BDD package since op-
erations that are important for other applications such
as quantification, DVO and garbage collection are not
realized as efficiently as in other packages.

4 Experimental Results

In this section experimental results are given that show the
behavior of NAND-BDDs as compared to an ITE realiza-
tion using well known benchmark examples. The experi-
mental results were carried out using a SUN Ultra 1 with
256 MBytes. All times are given in units of CPU seconds.

The prototype software has been written in C + +. In
order to provide a fair comparison, the ITE and NAND-
BDD packages are implemented in the same environment
in that neither package uses a memory manager and both
are implemented without the use of complemented edges.

Both packages only make use of the simple terminal case
and do not consider techniques like case normalization or
ITE constant as described in [1].

Benchmarks from ISCAS85 and the combinational part
of ISCAS89 are used in the experimental results as pre-
sented in Table 2. For both packages the same static vari-
able ordering using a method similar to that described in
[6] is used and a hard upper node limit of 250.000 is used.
The only benchmarks reported here are those for which
a result was obtained within this node limit and within 1
CPU hour. Furthermore, we focus on “non-trivial” exam-
ples which take longer than 1 CPU second. The bench-
mark function c0880 has been included since it was one of
the few where ITE showed better performance regarding
runtime. For all other larger examples, NAND-BDDs out-
performed those constructed using ITE in terms of runtime
for the synthesis operation.

The results are given in Table 2. The name of the bench-
mark is given in the first column. In columns ITE and
NAND, nodes and time denotes the number of nodes al-
located during the BDD construction and the time needed,
respectively. The last two columns of the table give the
relative ratios for the number of nodes and the runtime
needed. As can be seen, the number of nodes is never more
than 50% larger for NAND-BDDs as compared to the ITE
based implementation while the runtime in some cases can
be reduced by more than 99% (see c1908). During CEC the
runtime is usually more critical and the maximum amount
of memory that is used can easily be controlled by the hard
limit on the number of nodes set by the user.



Table 2: ITE vs. NAND for BDD construction

name ITE NAND ratios
nodes time nodes time nodes time

cs01423 87987 2.34 117833 1.04 1.3392 0.4444
cs05378 47583 15.20 52375 12.47 1.1007 0.8269
c0432 28656 190.81 35591 5.48 1.2420 0.0287
c1908 162035 264.24 185989 2.43 1.1478 0.0091
c5315 116416 10.36 186178 1.80 1.5992 0.1737
c0880 50843 0.35 60326 0.52 1.1865 1.4857
c0499 136821 264.14 146193 84.67 1.0684 0.3205

5 Conclusions

A technique for the implementation of a BDD package that
finds application in fast combinational logic equivalence
checking is presented. The prototype package discussed
here only makes use of one synthesis operation; the NAND
instead of the ITE based one. Due to the simplicity of the
implementation discussed here, the experimental outcomes
have resulted in significant computer runtime speedup in
terms of BDD construction time.

It is focus of future work to include the use of comple-
mented edges, since this would allow for further simpli-
fication of the synthesis calls and it can also be expected
that the number of nodes will decrease more than the ITE
based packages, since negation is used intensively during
the construction process.

Acknowledgments

This work was motivated by the talks of Geert Janssen
and Andreas Kühlmann at the Dagstuhl Seminar Computer
Aided Design and Test - BDDs versus SAT in February
2001.

References

[1] K.S. Brace, R.L. Rudell, and R.E. Bryant. Efficient
implementation of a BDD package. In Design Au-
tomation Conf., pages 40–45, 1990.

[2] R.E. Bryant. Graph - based algorithms for Boolean
function manipulation. IEEE Trans. on Comp.,
35(8):677–691, 1986.

[3] R.E. Bryant. Symbolic Boolean manipulation with
ordered binary decision diagrams. ACM, Comp. Sur-
veys, 24:293–318, 1992.

[4] J.R. Burch and V. Singhal. Tight integration of com-
binational verification methods. In Int’l Conf. on
CAD, pages 570–576, 1998.

[5] R. Drechsler. GateComp: equivalence checking in
CVE. In ITG/GI/GMM-Workshop “Methoden und
Beschreibungssprachen zur Modellierung und Veri-
fikation von Schaltungen und Systemen”, 2001.

[6] H. Fujii, G. Ootomo, and C. Hori. Interleaving based
variable ordering methods for ordered binary deci-
sion diagrams. In Int’l Conf. on CAD, pages 38–41,
1993.

[7] A. Hett, R. Drechsler, and B. Becker. MORE: Al-
ternative implementation of BDD packages by multi-
operand synthesis. In European Design Automation
Conf., pages 164–169, 1996.

[8] A. Kuehlmann, M. Ganai, and V. Paruthi. Circuit-
based Boolean reasoning. In Design Automation
Conf., pages 232–237, 2001.

[9] S. Minato, N. Ishiura, and S. Yajima. Shared binary
decision diagrams with attributed edges for efficient
Boolean function manipulation. In Design Automa-
tion Conf., pages 52–57, 1990.

[10] V. Paruthi and A. Kuehlmann. Equivalence checking
combining a structural SAT-solver, BDDs, and sim-
ulation. In Int’l Conf. on Comp. Design, pages 459–
464, 2000.

[11] R. Rudell. Dynamic variable ordering for ordered bi-
nary decision diagrams. In Int’l Conf. on CAD, pages
42–47, 1993.

[12] F. Somenzi. Efficient manipulation of decision di-
agrams. Software Tools for Technology Transfer,
3(2):171–181, 2001.


