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Abstract—Combining both, state-of-the art natural language
processing (NLP) algorithms and semantic information offered
by a variety of ontologies and databases, efficient methods have
been proposed that assist system designers in automatically
translating text-based specifications into formal models. But due
to ambiguities in natural language, these approaches usually re-
quire user interaction. Following these achievements, we consider
natural language as a further input language that is used in the
design flow for systems and software. Consequently, concepts
from integrated development environments (IDE) as they can be
found for programming languages such as Java need to be made
available for natural language specifications as well.

In this paper, we propose lips, an integrated development
environment that is seamlessly implemented on top of Eclipse. It
contains recent NLP algorithms that extract formal models suited
for the Eclipse Modeling Framework and therefore provide a
starting point for an ongoing implementation. Whenever user
interaction is required, lips makes use of well-known IDE
concepts such as markers and quick fixes thereby enabling a
holistic user experience.

I. INTRODUCTION

In the recent past, several approaches have been presented
that assist the designer in extracting an implementation from
a specification by making use of natural language processing
(NLP) techniques (see e.g. [1]). It turned out that these ap-
proaches are in particular successful when an interactive dialog
with the designer is employed in contrast to fully automatic
approaches. Latter ones are often only applicable after several
restrictions have been applied to the input document, e.g. by
means of a domain specific dictionary or a restricted set of
sentence forms that are allowed (see e.g. [2]).

Interactive approaches [3] do not have to restrict the input
document because they can overcome obstacles such as am-
biguities by systematically asking questions to the designer in
order to resolve them. However, it is important that this ad-
ditional overhead caused by this “conversation” is not getting
in the way of creating an implementation and depreciates the
efficiency. A clever implementation of the dialog system is
therefore of paramount importance.

We envision a design flow for systems and software in
which natural language is treated as a further input language
for the specification level just as modeling languages are
used for formal modeling and programming languages are
used for the actual implementation. This is also illustrated by
means of Fig. 1, which shows the first abstraction levels in

978-1-4673-6271-9/13 © 2013 IEEE

31

e.g. natural language

Specification
Model
Implementation

Fig. 1: MDE-based design flow
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the Model Driven Engineering (MDE, [4]) based design flow
along with typical languages used to describe the respective
artifacts. However, the way of working with these languages
is fundamentally different. Whereas sophisticated Integrated
Development Environments (IDE) exist for modeling and de-
veloping software programs, natural language has often been
entered using a word processor.

Various platforms and development environments tailored
for natural language processing have been proposed over the
years. These systems often focus only on the linguistic aspects
and put sophisticated natural language processing techniques
in the focus. However, dedicated integrated systems that ex-
tend the conventional MDE-based design flow have not been
proposed thus far to the best of our knowledge.

In this paper, we propose lips, an integrated development en-
vironment particularly suited for natural language processing
in the context of MDE-based systems and software develop-
ment. Instead of using a word processor, well known concepts
that are used in program development such as markers, syntax
highlighting, and outlines are mapped and adjusted for the use
with natural language documents.

For this purpose, we have implemented recently proposed
interactive NLP algorithms that extract both structural models
and formal expressions from natural language specifications as
an Eclipse! plugin. The user interaction with the algorithms
is enabled by means of common IDE concepts leading to
a holistic user experience. The above NLP algorithms are
adjusted such that they produce models that are compatible
with the Eclipse Modeling Framework (EMF, [5]). Hence,
the extracted model elements serve as a starting point for the
ongoing implementation.

'www.eclipse.org
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Fig. 2: ECore model depicted as ECore diagram

The remainder of this paper is structured as follows.
Section II provides the necessary background in order to
comprehend the paper, whereas NLP algorithms that have been
implemented in lips are reviewed in Section III. The features of
the IDE are presented in Section IV before the paper finishes
with a related work discussion and conclusions in Sections V
and VI, respectively.

II. PRELIMINARIES
A. Model Driven Engineering

The main purpose of lips is to transform natural language
descriptions into models as they appear in Model Driven
Engineering based design flows. In MDE, models embody the
central elements during the design process. Instead of working
exclusively with source code, the most important aspects and
properties of the software or system to be implemented are
represented by means of so-called domain or meta models.
They abstract from precise implementation details, but are
already expressive enough to perform many interesting tasks
on this meta level such as model transformation [6], formal
verification [7], or automatic test case generation [8].

The MDE paradigm has been standardized by means of the
Meta Object Facility (MOF, [9]), a meta modeling architecture
which serves as base for many modeling languages and frame-
works such as the Unified Modeling Language (UML, [10]),
the Object Constraint Language (OCL, [11]), or ECore which
is part of the Eclipse Modeling Framework.

The algorithms and methods presented in this paper are
implemented on top of the EMF, as it is currently one of
the most popular meta modeling frameworks [12]. The central
element in an ECore model are classes, which can contain
attributes that represent the data elements of the class. Besides
attributes, operations can be defined which can access and
modify the attributes. Classes can be related to each other by
means of associations. For precise modeling, the formal declar-
ative language OCL can be used which allows for extending
ECore models by means of invariants, pre- and postconditions.
Invariants constrain the attributes and associations of classes
globally, whereas pre- and postconditions are associated to
operations, such that the preconditions and postconditions are
valid before and after the operation call, respectively.

Example 1: Fig. 2 illustrates the specification of a simple
computer architecture in ECore using the ECore diagram
notation that is following the style of UML class diagrams.

1. <noun.person> waiter, server

—-— (a person whose occupation is to serve at table (as
in a restaurant))

2. <noun.person> serverl

—— ((court games) the player who serves to start a point)
3. <noun.artifact> serverl, host

—— ((computer science) a computer that provides client
stations with access to files and printers as shared
resources to a computer network)

4. <noun.artifact> server -- (utensil used in serving food
or drink)

Fig. 3: WordNet output of the query for “server”

The structure of the system is defined by means of four classes,
namely a Processor, a Kernel, a Thread, and a Memory.
Attributes such as maxCapacity provide further details on
the respective components (e.g. the maximal capacity of the
processor).

B. Natural Language Processing

The lips IDE combines algorithms that use different natural
language processing techniques which are briefly reviewed in
this section.

1) Word Sense Disambiguation: When the correct sense
of a word must be determined, Word Sense Disambigua-
tion (WSD, [13]) comes into play. Given e.g. the sentence “The
server delivers the website,” it is easy for a human to identify
“server” as a technical device. For a computer, in contrast, it
is an impossible task to determine the correct sense with no
additional information. Thinking in terms of an MDE context,
it is not clear whether “server” describes a class which is part
of the model or an actor that interacts with the model.

In case of ambiguity, lips uses WordNet [14] for dictionary-
based word sense disambiguation [15]. WordNet is a lexical
dictionary of English, consisting of more than 90,000 word
senses and 166,000 pairs connecting senses with a semantic
meaning. For many senses, WordNet also provides example
sentences. It is designed to be used by external programs, such
as automated scripts or IDEs such as lips. Fig. 3 displays the
results of a WordNet query for the word “server”.

2) Constituency Grammars: A constituency grammar [16]
is used to decompose a sentence into its constituent parts,
usually depicted as a phrase structure tree (PST, see Fig. 4). A
PST is a tree whose root is the most general phrase structure, in
case of Fig. 4 it is §, the whole sentence. The leaves of the tree
are the words of the sentence. Moving along the branches from
the root to the leaves, the vertices become more specialized
phrase structures. Following the leftmost branch from the
example shown in Fig. 4 we get the following structures: S
(sentence) — NP (noun phrase) — DT (determiner) — “The”
(word within the sentence). The parent of a leaf corresponds
to the part-of-speech (POS, or tag) of the leaf, i.e. “The” and
“the” are determiners, “server” and “website” are nouns and
“delivers” is a verb. For details on how a PST is extracted
from a sentence, we refer to [15] and [17].

3) Dependency Grammars: In order to represent dependen-
cies between individual words, natural language processing
techniques make use of dependency parses [18], i.e. binary
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Fig. 4: Phrase structure tree (PST) of the sentence “The server
delivers the website.”
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Fig. 5: Typed dependencies of the sentence “The server
delivers the website.”.

dependency relations are extracted from the sentences. As an
example the relation nsubj binds a verb to its subject. The usual
notation for this relation is relation(governor,dependent), e.g.
nsubj(delivers,server). To avoid ambiguities, the position of
the word within the sentence can be appended to the words
of the relation (i.e. nsubj(delivers-3,server-2), see Fig. 5(a)).

The typed dependencies of a sentence s can be understood
as an edge-labeled graph whose vertices represent words and
labels the type of the dependency. There is an edge v — w
if and only if r(v,w) is a dependency of s. For a visualization
see Fig. 5(b).

III. INTERACTIVE NLP EXTRACTION

We aim for a design flow in which natural language is
the starting point not only for specifications but also for
(semi-)automatic algorithms. For this purpose, in the first
stage we address approaches that extract a formal model from
natural language descriptions in an interactive fashion. Two
existing approaches that target the extraction of structural
models and OCL expressions are briefly reviewed in this
section. For lips, they have been adjusted in order to generate
models that align with the Eclipse Modeling Framework.

A. Extracting Structure

Among other techniques, the algorithm described in [19]
is aiming for extracting UML class diagrams and UML
sequence diagrams from acceptance tests which can be found

Processor
capacity: Elnt
spawn(thread: Thread)

Thread
*isimple: EBoolean

Alprocessorspawns/asimplethread-
The number of aprocessor’s threadsmust not exceed the processor’scapacity.

Fig. 6: Extracting models

in Behavior-Driven Development (BDD, [20]) based design
flows. The considered UML class diagrams are so elementary
that they can be mapped to equivalent ECore models. In the
scope of the present paper, we only focus on the structure
extraction by means of ECore models.

From simple sentences much information can already be de-
termined automatically. As an example, consider the following
specification excerpt describing processors and threads:

A processor spawns a simple thread.
The number of a processor’s threads must not exceed
the processor’s capacity.

Fig. 6 illustrates that already from these two sentences a
significant amount of structural information can be extracted:
Since “thread” is an object noun, it can be concluded that
it represents a component of the considered system (to be
represented by a class). Recent progress in the development
of NLP technologies enables to extract these information
in a (semi-)automatic manner. More precisely, constituency
grammars and corresponding phrase structure trees provide
first insights for the classification of words with respect to the
model to be created. However, sometimes the syntactical and
grammatical information alone is not sufficient. For example
in the first sentence from Fig. 6, two nouns are identified in
the PST, i.e. “processor” and “thread,” but only the latter one
is determined to be a class. Due to ambiguities in language, a
“processor” can also be a person. This information cannot be
derived using constituency grammars. Hence, we are making
additionally use of word sense disambiguation using WordNet,
which reveals that “processor” can be both a person or an
artifact.

In order to determine the correct sense, lips uses the Sim-
plified Lesk algorithm [13]. The algorithm chooses the sense
whose gloss and example sentences provided by a dictionary
have the most words in common with the sentence containing
the word in question.

If the determined sense does not allow to automatically
classify the noun as either class or actor, the designer is
interactively asked to clarify this ambiguity.

Similarly, other information can be extracted from the
sentences. Adjective nouns such as “capacity” shall be added
as attributes to the corresponding class. Verbs correlate to
operations which can be invoked by components or actors.

Overall, exploiting these NLP technologies, ECore models
formally representing the structure of the considered system
can automatically be determined in many cases. However,
since the textual description can always contain ambiguities,
manual interactions with the design engineer cannot entirely be
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Fig. 7: Extracting OCL constraints

excluded leading to a (semi-)automatic and assisted approach
as evaluated in [19].

B. Extracting OCL Constraints

When a model is available, e.g. determined using methods
described in the previous section, formal behavioral specifi-
cations can be extracted from English sentences using the
approach presented in this section. More precisely, the goal
is to support the designer in creating a formal specification
in OCL from given informal natural language requirements.
During the generation process, it is exploited, that despite
the undoubtedly existing differences, the given input (i.e. the
sentence in natural language) and the desired output (i.e. the
formal requirement in OCL) are indeed quite similar. While
this is often not evident in a direct comparison, structural
analyses unveil the correlation between the input and the
output. This is illustrated in the following example.

Consider the informal requirement “The number of a pro-
cessor’s threads must not exceed the CPU’s capacity” and its
formal counterpart

not (self.Thread.size > self.capacity).

A direct mapping of these two descriptions (see the boxes
at the top of Fig. 7) is not straightforward. However, after
a prior application of semantical and grammatical analyses
followed by a normalization, a promising representation can
be obtained as shown in Fig. 7 (a) through (c). In fact, the
resulting normalized dependency graph of the sentence (see
Fig. 7(b)) is almost identical to the resulting abstract syntax
tree (AST) of the OCL constraint (see Fig. 7(c)).

However, the example in Fig. 7 also shows that, due to the
wide scope of natural language, a direct mapping of all parts
of the informal requirement to the appropriate identifier or
OCL operations is not guaranteed. Often different grammatical
forms of words (e.g. due to declension or conjugation) or
the use of synonymous descriptions represent obstacles to a
one-to-one mapping from the dependency graph to the AST.

Dictionary-based word sense disambiguation can be applied
to address these problems. Using this technique, normal forms
and synonymous identifiers are determined.

With respect to the example in Fig. 7, while e.g. not and
capacity can easily be mapped from the dependency graph to
the corresponding OCL expression (highlighted in blue color)
or model element (highlighted in red color), respectively, a
correct mapping of CPU is not obvious at a first glance.
However, the application of WSD unveils that among others
the word “CPU” is a synonym for “processor” (for a visual-
ization of the WSD process see Fig. 7(d)). Since Processor is
a class in the ECore model, it can be assumed that “CPU” is
just an alternative description of “processor” in the informal
description. Hence, substituting both words does not affect the
meaning of the requirement, but enables a correct mapping
from the informal requirement to the formal requirement.

IV. INTEGRATED DEVELOPMENT ENVIRONMENT

We have implemented lips as a plug-in on top of the Eclipse
IDE. The Eclipse plug-in development environment (PDE)
provides a systematic way of adding new languages and
features by offering interfaces to various IDE concepts.

This section lists the program features that are implemented
in lips and partly illustrated in Fig. 8.

Code Generation: Code generation is a concept that en-
ables to automatically produce output files without explicit
compiling. An example for this is the programming language
Xtend?: Java code is automatically generated during the editing
of source files. We are making use of code generation in order
to implement the natural language processing techniques that
have been presented in [19] and [21] in order to extract ECore
models and OCL expressions, respectively.

In particular, while writing natural language specifications,
EMF-compatible models are automatically generated in desig-
nated code generation folders. From these models code skele-
tons can be generated for any object oriented programming
language. The resulting models can be seen in Fig. 8 (2).
Eclipse also provides means to create a diagram from ECore
models, allowing to visually inspect the extracted models.

Furthermore, OCL is generated from both natural language
sentences and the underlying ECore model that has been
generated in the previous step. When a part of a sentence
cannot be resolved automatically, the user needs to pick a
candidate from a list of choices.

Project Management: In IDEs source files are organized in
terms of projects that store additional information on top of
the program code such as build parameters and user-defined
settings of the editor. When dealing with natural language
documents and in particular their algorithms it is important
to store auxiliary data, e.g. user responses to questions in the
dialog system.

Outline: An outline is used to display the structure of a
document. In lips we display the list of all sentences in the
specification and their syntactical structure (i.e. the phrase

2www.eclipse.org/xtend
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Fig. 8: Screenshot of lips with (1) editor, (2) project explorer, (3) outline, and (4) ECore diagram

structure tree [17] and the typed dependencies [15]). The
outline for an example sentence is depicted in Fig. 8 (3).

Views: A view is a window within the Eclipse IDE that pro-
vides additional information to the designer, possibly allowing
to modify its content. In lips we use views to

« visualize the phrase structure tree and the typed de-
pendencies as graphs, allowing the user to get a better
understanding of the sentence and the underlying syn-
tactical structure. The PST as well as the dependency
graph illustrate how a sentence has been understood by
the algorithm. This is in particular helpful for debugging
purposes in case of ambiguous sentences or unexpected
results. Examples of these views are illustrated in Fig. 10;
display the generated ECore model (see. Fig. 8 (4)) and
OCL expressions;

display and modify the context information either auto-
matically generated by lips or directly entered by the user
(e.g. that the word “server” refers to the technical device
and not a waiter at a restaurant). This view is depicted
in Fig. 9 (3);

display the WordNet output for a given query as depicted
in Fig. 9 (4).

The user of lips is in complete control of the views: they can
be arbitrarily moved and resized to fit the actual needs of the
user.

35

Markers: Markers are used to underline code fragments that
correspond to errors and warnings e.g. given by the compiler.
Markers can be additionally equipped with so-called quick
fixes, which allow for an automatic resolution of the respective
issue. Errors could e.g. point to a missing include or import
statement, which can automatically be inserted by a quick fix.
We foresee to use markers and quick fixes as major elements
to implement an unobtrusive dialog system in the interactive
NLP algorithms. Ambiguities are presented to the designer as
markers at the respective word with an additional information
message. The designer can respond to this problem in terms of
a quick fix, which automatically causes an action resolving the
problem. In Fig. 8 (1), the word “processor” cannot clearly be
assigned to the model, hence it is annotated with a warning.
Every marker also appears in the Eclipse “Problems” view (see
Fig. 9 (1)). This gives an overview of all problems at once.
This is especially helpful when working with specifications
that span multiple files. When asking lips for a quick fix, a
new window with the list of possible solutions is opened (see
Fig. 9 (2)). WordNet senses for the word in question are used
to generate suitable proposals for the word classification.

Hyperlinks: Once models and OCL expressions have been
extracted from the natural language specification using code
generation, they can be linked to the original document by
means of hyperlinks. As an example, if some noun in a
sentence corresponds to a class in a model, a click on the
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Fig. 9: Screenshot of lips with (1) Problems view, (2) Quick Fix Window, (3) a view showing all classified words, and (4)

WordNet view

noun opens the model and focuses the class (this is shown in
Fig. 8 (1)).

V. RELATED WORK

The automatized extraction of information for software from
natural language specifications has been intensively studied
in the past. Saeki et al. [22] presented an approach similar
to [19] that associates words in English sentences to software
concepts found in the object oriented programming paradigm.
The extraction of OCL constraints from English sentences
has been considered in [23] and [21]. Most of the considered
approaches are aiming for fully automatic methods and restrict
the input language to achieve this goal. Some approaches
make use of so-called boilerplates [24] or determine recurring
patterns in property specifications [25]. A more general ap-
proach is followed by the Attempto controlled English which
is a restricted subset of English that can automatically be
transformed into formal descriptions such as Prolog [2].

Integrated development environments for natural language
processing have been considered for different purposes in the
past. Some IDEs are settled at a lower level and focus on
the internals of natural language and are targeting linguists as
audience rather than software and system developers. Among
them, the INTEX platform [26] is tailored for linguist to
describe natural language in general, whereas LexGram [27]

focuses on categorial grammars. The PAGE system® offers a
collection of various linguistic resources.

The IDEs that are most related to lips are GATE [28],
VisualText*, and NL-OOPS [29]. However, GATE focuses on
a common system for NLP related tasks and VisualText is
specialized in the development of user-defined text analysis
applications. In contrast, lips does not put the NLP techniques
into the foreground but uses them in the background thereby
aiming at integrating natural language as a major language
for the design flow of software and systems. NL-OOPS is the
approach closest to lips, however, it does not emphasize on the
integration with other modeling and programming languages
in a common IDE.

VI. CONCLUSIONS

In this paper, we presented lips, an IDE that integrates
natural language as a major language for specifications in
the manner modeling languages and programming languages
are used to describe a formal model and an implementation,
respectively. In particular this works very well when targeting
interactive NLP algorithms which do not restrict the input
language but occasionally require the user to manually inter-
vene in order to resolve ambiguities. We are mapping widely
known IDE concepts such as outlines, markers, views, and

3 4
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Fig. 10: Screenshot of lips’s view showing the phrase structure tree and the dependency graph

quick fixes to implement a dialog system that realizes the user
interaction. As a result, a seamless user experience results
in which systems and software can be developed from the
initial specification down to the implementation in a single
the environment.

Furthermore, lips also serves as a development platform on
which MDE-related NLP algorithms can be implemented and
evaluated. In particular, the quick access to useful information
such as WordNet, phrase structure trees, and dependency
graphs turns out to be very useful.

However, some open research challenges remain which
we would like to tackle in future works. As an example,
the incorporation of additional databases, in particular those
from the internet, is not straightforward. Furthermore, a clever
management of the user acquired data is important in order to
make the information available not only for the current project
but also for future projects of similar kind.
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