
SWITCHING ACTIVITY ESTIMATION OF FINITE STATE
MACHINES FOR LOW POWER SYNTHESIS

Mikael Kerttu Per Lindgren Mitch Thornton Rolf Drechsler
Luleå University of Technology Mississippi State University University of Bremen

Luleå, Sweden Mississippi State, MS, USA 28359 Bremen, Germany

{kerttu,pln}@sm.luth.se mitch@ece.msstate.edu drechsle@informatik.uni-bremen.de

ABSTRACT
A technique for computing the switching activity of synchronous
Finite State Machine (FSM) implementations including the influ-
ence of temporal correlation among the next state signals is de-
scribed. The approach is based upon the computation that a FSM
is in a given state which, in turn, is used to compute the condi-
tional probability that a next state bit changes given its present
state value. All computations are performed using Decision Dia-
gram (DD) data structures. As an application of this method, the
next state activity information is utilized for low power optimiza-
tion in the synthesis of Binary Decision Diagram (BDD) mapped
circuits. Experimental results are presented based on a set of the
ISCAS89 sequential benchmarks showing an average power re-
duction of 40 percent and up to 90 percent reduction for individual
benchmarks on the estimated power dissipation.

1. INTRODUCTION

In CMOS based digital circuits switching activity is one of the
main contributors to overall power dissipation [7]. In order to op-
timize a circuit for low power it is of crucial importance to ac-
count for switching activities of internal signals. Unfortunately,
it is difficult to account for internal net switching activity in gen-
eral since these quantities are dependent upon spatial and temporal
correlation of input signals. In [5] a method for low power opti-
mization that utilizes temporal correlation is presented. Assuming
that input signals switch randomly can lead to grossly inaccurate
switching activity estimates. This provides motivation for investi-
gating methods for computing switching activities taking correla-
tions into consideration. The focus here is to exploit the relation-
ship specified in the transition function portion of an FSM net-list
to extract temporal correlation information about the state vector
bits.

CMOS circuit power dissipation depends heavily on the input
signal switching characteristics. If the signals change the circuit
will dissipate power and if they are constant the power dissipa-
tion is predominately due to leakage. This observation leads to the
conclusion that minimizing signal changes in the circuit will lead
to a smaller amount of energy consumption. One problem with
optimizing digital circuits is that information about input signals
to each internal sub-circuit is not usually known. It is necessary
to know how these signals behave to get an accurate result. One
way to gather this information is to use simulation of the circuit;
however, it far too complex to get full coverage of even moderately
sized circuits in this manner. Alternatively, analysis of the circuit
structure may be used to obtain the needed information. The tech-

nique described here uses analysis of a net-list description of an
FSM to acquire information that can be used in determining inter-
nal switching activities within the circuit.

The approach is to first extract the state transition relation from
a given net-list and then to compute limiting distribution giving
the probability that the FSM is in some state. The limiting dis-
tribution computation requires that input signal probabilities are
provided and a state space traversal for extraction of the transition
graph. All computations are performed through the manipulation
of Algebraic Decision Diagrams (ADDs) [2][3]. Also, BDDs are
used for the state space traversal which is based on a depth-first
traversal method. During the traversal the transition probabilities
are calculated. To span the state space of FSMs, BDD techniques
have shown great efficiency as in [1].

If a priori information on input probabilities is known, it is pos-
sible to derive the probability and activity for next state Using an
iterative method, the steady state probabilities are found which are
used to compute the switching activities of the next state and out-
put signals. These quantities are obtained efficiently and require
only a single traversal of the ADD.

The paper is organized as follows. Section 2 describes FSM
analysis and previous work. Section 3, presents how we extract
the signal statistics from the steady state probabilities and the tran-
sition probability matrix. Then in section 4 we describe how we
use the signal statistics in low power synthesis. The experimental
results are shown in section 5. Finally the paper is concluded in
section 6.

2. FSM ANALYSIS

There are several approaches for efficient FSM spanning [1]. We
have chosen to implement the spanning function in a strait forward
way by a depth-first recursive algorithm, which also calculates the
transition probability matrix represented by an ADD in the same
pass. In [2] and [3] Algebraic Decision Diagrams (ADD) were
used as the transition probability matrix and the steady state prob-
abilities were calculated in an efficient way. We have done our
calculations on the ADD in an iterative way, which is sufficient for
our purpose of signal activity extraction.

Throughout this section we will provide a description of the
methodology of how to do this analysis and also demonstrate it
with an example. We have used a set of ISCAS89 benchmarks to
test our method.

2.1. Building a BDD

The building is done in two steps. The first part is non-recursive
and it builds up small BDD fragments representing the function of
a row. The second part is based on a recursive algorithm that starts
from the outputs and composes the fragments into a single BDD.

The first part of building the BDD is done by translating each
line of the circuit description to a BDD with pseudo variables (wire
names). The pseudo variables are referring to some output from an
other BDD or an input variable. In figure 1 you can see the BDD
fragment generated from the last line of the example.

0

G11

0 1

G5

G0

Fig. 1. Fragment of the function {G11 = AND(G0,G5)}

When we have a generated BDDs of all the lines we have to
compose a single BDD for each output. This is done recursively
starting from each output BDD fragment (primary and next state
outputs). The recursion terminates when reaching primary inputs
or register outputs. When the recursion unfolds the actual func-
tion substitutes the pseudo variables and the composed BDD is
returned.

10

1 0

0

(G0)

(G2)

(G10) (G11)

(G3)

0

0 0

0

0

1
1

1

1

1

(G1)
NS[0:0] NS[1:1]O[0:0]

I[0:0]

CS[0:0]

CS[1:1]

Fig. 2. The complete function

2.2. Span FSM states

The completed BDD is used to span the FSM. Starting from the re-
set state each possible new state is recursively visited (depth first)
until reaching an already visited state. During the recursion a tran-
sition probability matrix is constructed. The usually sparse ma-
trix is efficiently represented by an ADD (Algebraic Decision Di-
agram) [2][3]. This matrix is addressed with the current state as
the columns and next state as the rows. The value in each entry
in the matrix (ADD leaf) represents the probability to go from the
current state to the next state.

Example 1 When we calculate the transition probabilities the
matrix starts empty and a new entries are added during the re-
cursion. We assume that the probability of input I is equal to one
is 1/4 (P(I)=1/4).

S

S S

1
0

S

1

1

0

0

00 01

10 11

Fig. 3. FSM states

CS00 CS01 CS10 CS11

NS00 0 0 0 0
NS01 0 0 0 0
NS10 0 0 0 0
NS11 0 0 0 0

Here we go from state 00 to state 01 and add the probability of
P(I) to row 01 and column 00.

CS00 CS01 CS10 CS11

NS00 0 0 0 0
NS01 1/4 0 0 0
NS10 0 0 0 0
NS11 0 0 0 0

Here we go from state 01 to state 10 and add the probability of
P(I) to row 10 and column 01.

CS00 CS01 CS10 CS11

NS00 0 0 0 0
NS01 1/4 0 0 0
NS10 0 1/4 0 0
NS11 0 0 0 0

•
•

Finally after we have spanned all reachable states we got the com-
plete matrix.

CS00 CS01 CS10 CS11

NS00 3/4 3/4 3/4 0
NS01 1/4 0 1/4 0
NS10 0 1/4 0 0
NS11 0 0 0 0

The ADD can describing this matrix is shown in figure 4 .

0

00

0

0

0

1

1

1
0

0

0

CS[1:1]

CS[0:0]

NS[1:1]

NS[0:0]

3/4

3/4 1/4 1/4

1

1010 0 1

1

Fig. 4. ADD describing a Matrix

2.3. Calculate the state probabilities

The ADD obtained by spanning the FSM is used to calculate the
steady state probabilities for each state. The FSM can be seen as a
Markov chain [2][3] and this is used in the calculation of the state
probabilities. The ADD is multiplied with an initial state probabil-
ity vector, this represents a matrix multiplication. The initial state
vector should have the sum of the entries equal to one and each
column should have the sum equal to one..

Ax̄ = x̄′ (1)

,where A is the matrix represented by the ADD, x̄ and x̄′ are the
steady state probability vectors after the iterations. The iteration
terminates when x̄ and x̄′ are within the specified tolerance from
each other. The resulting x̄′ contains the resulting steady state
probability vector.

Example 2 The state probability vector is initialized such that
each state entry takes on the value 1/nr, where nr is the num-
ber of reachable states, except for the unreachable state entries,
which takes on the value 0. The total probability in each column
of Matrix A is one.




3/4 3/4 3/4 0
1/4 0 1/4 0
0 1/4 0 0
0 0 0 0


 ×




1/nr
1/nr
1/nr

0


 =




x′
1

x′
2

x′
3

0


 (2)




3/4 3/4 3/4 0
1/4 0 1/4 0
0 1/4 0 0
0 0 0 0


 ×




1/3
1/3
1/3
0


 =




3/4
1/6
1/12

0


 (3)

•
•




3/4 3/4 3/4 0
1/4 0 1/4 0
0 1/4 0 0
0 0 0 0


 ×




3/4
0.1999
0.0501

0


 =




3/4
1/5
1/20

0


 (4)




3/4 3/4 3/4 0
1/4 0 1/4 0
0 1/4 0 0
0 0 0 0


 ×




3/4
1/5
1/20

0


 =




3/4
1/5
1/20

0


 (5)

The steady state probabilities(PSS) are shown in equation 6.

PSS(S[1 : 0] = 00) = PSS(00) = 3/4
PSS(S[1 : 0] = 01) = PSS(01) = 1/5
PSS(S[1 : 0] = 10) = PSS(10) = 1/20
PSS(S[1 : 0] = 11) = PSS(11) = 0

(6)

3. EXTRACTING SIGNAL STATISTICS

The Transition Probability Matrix and the Steady State probability
vector can be used to calculate the bit probability and the switching
activity of the next state bits.

3.1. Calculate bit probabilities

The state probabilities are used to calculate the bit probabilities for
each register. The bit probabilities is calculated by traversing the
ADD and utilizing equation 7.

(∀i)P (NS[i : i]) =
∑

∀S[N−1:0]εS[i:i]=1

PSS(S[N − 1 : 0]) (7)

Example 3 For next state bit zero we add all Steady State proba-
bilities, which has one on bit zero. In a similar way we do this for
bit one. The computations are shown in equation 8.

P (NS[0 : 0]) = PSS(01) + PSS(11) = 1/5
P (NS[1 : 1]) = PSS(10) + PSS(11) = 1/20

(8)

3.2. Calculate Bit activities

To calculate the activity for each bit we use the ADD with the state
transition probabilities and the steady state probabilities calculated
earlier. PSS(n) denotes the steady state probability for state n,
n[i:i] is the i:th bit of the vector n, A is the Matrix containing the
state transition probabilities (A[NSk][CSn] = P (NSk|CSn)) ,
a(NS[i:i]) is the activity for the next state bit i and is derived by the
following formula and algorithm.

(∀i)a(NS[i : i]) =
∑
∀n

PSS(n) ×
∑

∀kε(k[i:i] �=n[i:i])

P (NSk|CSn)

(9)

BitActivity(state[],Cur,lev,NrStBits) {
if(IsConst(Cur)&&(lev==2*NrStBits-1)){
for(i=0;i<NrStBits;i++)
if(state[i]!=state[i+NrStBits])//Toggle

Activity[i]+=StateP[GetCS(state[])]*Cur.P;
} else if(Cur.lev != lev)||IsConst(Cur)){
// Expand tree
state[lev]=0
BitActivity(state[],Cur,lev+1,NrStBits)
state[lev]=1
BitActivity(state[],Cur,lev+1,NrStBits)

} else { // Traverse Level
state[lev]=0
BitActivity(state[],Cur.l,lev+1,NrStBits)
state[lev]=1
BitActivity(state[],Cur.r,lev+1,NrStBits)

}
}

NextState CurrentState

state

state[i] state[i+nr_state_bits]

Toggle bit i?

i i

Fig. 5. Combined state vector

Example 4 The equation 9 is used to calculate the next state ac-
tivities in the following example.

a(NS[0 : 0]) = PSS(00) × P (NS01|CS00) + PSS(01)
× (P (NS00|CS01) + P (NS10|CS01))
+ PSS(10) × P (NS01|CS10) = 3/4 × 1/4
+ 1/5 × (3/4 + 1/4) + 1/20 × 1/4 = 2/5

a(NS[1 : 1]) = PSS(00) × 0 + PSS(01) × P (NS10|CS01)
+ PSS(10) × (P (NS01|CS10)
+ P (NS00|CS10)) = 0 + 1/5 × 1/4
+ 1/20 × (1/4 + 3/4) = 1/10

(10)

4. LOW POWER SYNTHESIS

We demonstrate the use of statistical information (signal probabil-
ity and activity) for low power synthesis of BDD mapped circuits
[5]. The next state and output functions represented by BDDs, are
fed to the low power optimization tool, which seeks to minimize
the estimated power dissipation by iterative variable reordering of
the BDDs. The resulting BDDs can be directly mapped to a pass
transistor logic circuit [6]. The power dissipation is based on such
circuits.

5. EXPERIMENTAL RESULTS

In this section we preset experimental results from the ISCAS se-
quential benchmarks. We used the CUDD 2.3.0 BDD-package [8]
and our synthesis tool [5]. The Area opt column contains the re-
sults for the area optimized circuits. The optimization done on
these circuits are a heuristic minimization on the number of nodes
in the BDD. The NonFSM opt column describes the low power
synthesis approach without the FSM analysis. Instead it uses de-
fault values on the state vector for signal probabilities and switch-
ing activities. Finally we have the FSM opt column with the ex-
tracted signal statistics applied on the state vector and using our
low power synthesis [5] tool. Size stands for the number of BDD
nodes and ˆPD is our estimate of power.

We have assumed P (I [X : X]) = 0.5 for all primary inputs.
The results show an average power reduction of 43 percent by

the new proposed method compared to the area optimized method.
The improvements range from 0 percent to 95 percent reduction.

The results show that the power optimized circuit has on aver-
age an increase of 51 percent area over the area optimized circuit.

The low power algorithm that use the default values on State
bits for the activities (a(S[X : X]) = 0.5) and probabilities
(P (S[X : X]) = 0.5) has a limited success on reducing power.
For some benchmarks produce circuits with higher power dissipa-
tion than the area optimized, however on average it still has better
results than the area optimized circuit.

6. CONCLUSIONS

As the experiments show we obtain significant reduction of power
by analyzing the FSM and using this information in our synthe-
sis algorithm[5]. These results show that the need for knowing the
signal properties and applying that knowledge in the synthesis pro-
cess is crucial for low power applications. We expect our approach
to be further improved by incorporating low power state encod-
ing techniques, for example by restructuring the FSM as in [4].

Area opt NonFSM opt FSM opt Change
name Size ˆPD Size ˆPD Size ˆPD ˆPD
s208.1 40 25 40 25 64 19 -24%
s27 9 4.1 9 4.1 9 4.1 0%
s298 73 4.3 74 4.2 77 2.9 -33%
s344 103 12 108 19 148 3.4 -72%
s349 103 12 108 19 127 3.3 -73%
s382 120 2.1 122 2.1 120 2.1 0%
s386 113 44 114 41 114 39 -11%
s400 120 2.1 122 2.1 120 2.1 0%
s444 150 43 161 19 156 2.1 -95%
s510 163 118 168 81 153 61 -48%
s526 137 8.4 139 8.1 136 4.6 -55%
s641 398 81 384 77 1149 15 -81%
s713 398 81 384 77 1149 15 -81%
s820 219 172 261 149 280 108 -37%
s832 219 174 261 148 294 103 -41%

Table 1. ISCAS89 benchmarks

Methods for multi level synthesis using BDD based functional de-
composition may increase the usability of the proposed approach.
These are topics set for further research.

7. REFERENCES

[1] G. Cabodi, P. Camurati, and S. Quer. Improving symbolic
reachability analysis by means of activity profiles. IEEE
Trans. on Comp., 19(9):1065–1075, 2000.

[2] G. D. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Sym-
bolic algorithms to calculate steady-state probabilities of a fi-
nite state machine. In EDAC 94, pages 214–218, 1994.

[3] G. D. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Markovian
analysis of large finite state machines. IEEE Trans. on Comp.,
15(12):1479–1493, 1996.

[4] B. Kumthekar, I. Moon, and F. Somenzi. A symbolic algo-
rithm for low power sequential synthesis. In Int’l Symp. on
Low Power Electronics and Design, pages 56–61, 1997.

[5] P. Lindgren, M. Kerttu, R. Drechsler, and M. Thornton. Low
power optimization techniques for bdd mapped circuits using
temporal correlation. In technical report, 2001.

[6] P. Lindgren, M. Kerttu, M. Thornton, and R. Drechsler. Low
power optimization technique for BDD mapped circuits. In
Asia and South Pacific Design Automation Conference 2001,
pages 615–621, 2001.

[7] K. Roy and S. Prasad. Low-Power CMOS VLSI Circuit De-
sign. Wiley Interscience, 2000.

[8] F. Somenzi. CUDD: CU Decision Diagram Package Release
2.3.0. University of Colorado at Boulder, 1998.

