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Abstract
Satisfiability of complex word-level formulas often arises

as a problem in formal verification of hardware designs de-
scribed at the register transfer level (RTL). Even though
most designs are described in a hardware description lan-
guage (HDL), like Verilog or VHDL, usually this problem is
solved in the Boolean domain, using Boolean solvers. These
engines often show a poor performance for data path veri-
fication.

Instead of solving the problem at the bit-level, a method
is proposed to transform conjunctions of bitvector equali-
ties and inequalities into sets of integer linear arithmetic
constraints. It is shown that it is possible to correctly
model the modulo semantics of HDL operators as linear
constraints. Integer linear constraint solvers are used as a
decision procedure for bitvector arithmetic. In the imple-
mentation we focus on verification of arithmetic properties
of Verilog-HDL designs. Experimental results show con-
siderable performance advantages over high-end Boolean
SAT solver approaches. The speed-up on the benchmarks
studied is several orders of magnitude.

1 Introduction

Register transfer level (RTL) hardware description lan-
guages (HDLs), such as VHDL and Verilog, are widely
used for hardware design. Bitvectors are used to repre-
sent variables and their values by RTL-HDLs. Important
arithmetic bitvector operators are for instance negation, ad-
dition, multiplication, extension, extraction, concatenation,
and shifting. These operators are often used to model data
paths of hardware designs. Many design automation tools
operating on HDLs, including logic verification, test gener-
ation, and synthesis, have to solve the satisfiability problem
for word-level formulas. Usually this is done by breaking
down the problem onto the bit-level. But then datapaths in
the RTL often lead to performance problems. Solving the
SAT problem directly on the word-level, as opposed to first
translating it into the Boolean domain, bears a high poten-
tial for optimization for those tools. Solving systems (con-
junctions) of equalities and inequalities of arithmetic bitvec-
tor terms arises as a sub-problem of word-level satisfiability
checking.

Recently, several theories of fixed sized bitvectors along
with polynomial complexity bound decision procedures
have been proposed [3, 10, 9]. They cannot handle arith-
metic operations like addition and scalar multiplication,
since deciding arithmetic over bitvectors isNP -hard. Other
approaches, like [2], handle addition in their theory.

As an alternative the us of word-level decision diagrams
(WLDDs) has been proposed and arithmetic circuits, like
multipliers, have successfully been verified, but the integra-
tion in an automatic flow turns out to be difficult due to the
exponential worst case behavior of the synthesis operations
(for more details see [5]).

Cheng et al. [8] propose a hybrid ATPG modular arith-
metic constraint solving technique for assertion checking.
An arithmetic constraint solver based on the modular num-
ber system is used for satisfiability checking of a datapath
portion. However this solver is limited to linear constraints
arising from adders, subtractors and multipliers with one
constant input. Shifters and inequalities are not handled by
their modular solver but the possible solutions are heuristi-
cally enumerated.

Fallah [7, 6] proposed a hybrid satisfiability approach,
HSAT, to generate functional test vectors for RTL designs.
This hybrid method generates linear arithmetic constraints
(LACs), for arithmetic operators, and conjunctive normal
form clauses for Boolean logic. This approach was uni-
fied in [18], where both arithmetic word-level operators as
well as Boolean parts are linearized yielding a single In-
teger Linear Constraint Problem (ILP) instance. However
[7, 6, 18] model arithmetic operators straightforward, with-
out their usual modulo semantics, which is particularly im-
portant as can be seen in the following:
Example 1: Let A[n], B[n] and C[n] be bitvector variables
of width n, and S[1] a Boolean variable. (The width of
bitvectors and operators is written as subscript.) Let A,
B, C and S be linear variables. (Without loss of general-
ity throughout this paper all integer variables are implicitly
constrained to be non-negative.) In [7, 18] the following
linearization rules were proposed:

� Addition: C[n] = A[n] +[n] B[n] is modeled by the
constraint A+B � C = 0.

� Comparator: S[1] = (A[n] < B[n]) is linearized using
the constraint pair A � B � 2

n
� (1 � S) � �1 and

A � B + 2
n
� S � 0, with the additional constraints

A � 2
n
� 1, B � 2

n
� 1 and S � 1.
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Figure 1. Example RTL
The problem is illustrated by the circuit in fig. 1. With
n = 2 the equational bitvector representation is k [2] =

i[2] +[2] j[2], and l[1] = (k[2] < 3[2]). Using the rules above
linearization yields the ILP:

i+ j � k = 0

k � 3� 2
n
� (1� l) � �1

k � 3 + 2
n
� l � 0

i � 3

j � 3

l � 1

For i = 3 and j = 1 one would expect l = 1, since i [2] =
3[2] and j[2] = 1[2] implies l[1] = 1[1], 3[2] +[2] 1[2] = 0[2]



and 1[1] = (0[2] < 3[2]). But the only solution for the ILP is
l = 0. With an additional constraint k � 3 the ILP becomes
unsatisfiable while in the bitvector domain l = 1 still holds.
The problem lies in the modeling of the addition, where the
modulo semantics is ignored. For this, a straightforward
modeling does not work for Verilog-like operators.

We propose a methods for transforming conjunctions of
bitvector equalities and inequalities into equivalent con-
junctions of equations and disequations in integer linear
arithmetic. In particular bitvector terms are translated into
linear terms, along with a set of linear arithmetic constraints
(LACs). Propositions are directly translated into LACs (but
could also be translated into terms, if desired). A conjunc-
tion of such constraints is referred to as an Integer Linear
Constraint Problem (ILP).
For a given word-level SAT problem an equivalent ILP is
generated, which has a solution iff the original bitvector
system has a solution. This means that integer solutions can
be transformed back into the bitvector domain. These so-
lutions are then also solutions for the word-level SAT prob-
lem. The semantics of the word-level operators resembles
that of Verilog-HDL. Boolean logic is not modeled because
the focus lies on the datapath – however it could be inte-
grated.
In Verilog-HDL arithmetic on bitvectors is always per-
formed modulo and is therefore non-linear. Since a straight-
forward linearization of word-level arithmetic operators
does not work, each bitvector term is linearized, such that
it produces exactly the same result (w.r.t. coding integers as
bitvectors).
In example 1 the equation k[2] = i[2] +[2] j[2] would have
been linearized to i + j � k � 4� = 0 with the additional
constraints i + j � 4� � 3 and � � 1. It is easy to see
that this transformation preserves satisfiability and does not
introduce more solutions.
Experimental results comparing the proposed technique to
high-end SAT solvers show the advantage of the approach.
For several examples the speed-up is several orders of mag-
nitude, i.e. for benchmarks the SAT solvers take several
minutes, while our techniques finishes the formal verifica-
tion in less than one CPU second.

2 Bitvector Arithmetic

Bitvectors and the syntax and semantics of a conjunction of
bitvector equalities and inequalities are defined.

2.1 Bitvectors
A bitvector x[n] 2 f0; 1gn of width n is denoted from
right to left as (xn�1; : : : ; x0). The auxiliary functions
natn and vecn convert bitvectors into natural numbers and
vice versa (such that vecn = nat�1

n
). The i-th projection

of (an�1; : : : ; a0) is denoted as �(a[n])n;i. For instance
a[n](i) denotes the i-th bit of a[n], and nat(a[n]) denotes
the integer value of the bitvector a [n] with nat(a[n]) =P

n�1
i=0 2

ia[n](i). If the width n of a is obvious or irrelevant,
ai is used as shorthand for a[n](i). The boolean connectives
: (negation), _ (or), and ^ (and) over f0; 1g are defined as
usual.

2.2 Syntax
A bitvector formula is a conjunction of propositions. Propo-
sitions are build over BV-terms. The operators involved in
BV-terms are a subset of Verilog-RTL. The operators pre-
sented here are:

� Propositional: Equality, inequality, less.

� Arithmetic: Addition, summation1, scalar multiplica-
tion2, negation3.

� Shift/Slice: Left and right shift, zero extend4, sign ex-
tend5, concatenation, extraction

Formally, let t[n], BV[n], CBV[n] denote a bitvector term,
a bitvector (variable), and a constant bitvector of width n,
respectively. Let m;n; o 2 N and k; p; q; c 2 N0 . Then the
syntax is formally defined in eq. 1, fig. 2. Multiplication
could be integrated, along the lines of Fallah [6], using a
for example a shift-add scheme.

2.3 Semantics

The interpretation of bitvector terms, propositions and for-
mulas is defined as in Verilog-HDL. Formally an interpreta-
tion is a function that, given an assignment to the variables,
assigns values of a domain to terms. Formally, given a do-
main D = [Dn, Dn = f0; 1gn. A variable assignment
(environment) of variables V arn of width n is a function
'n : V arn ! Dn and ' = ['n. Given an environment ',
the interpretation of a syntactic element s under' is written
as JsK'. Given a variable assignment ' the interpretation
of bitvector terms and propositions is defined in equation 2,
fig. 3. For example the concatenation of two terms t1[n1] and

t2[n2] of width n1 and n2, resp., is denoted as t1[n1]
t2[n2] and
for a variable assignment ' the interpretation, i.e. the value
of this term, is denoted by Jt1[n1] 
 t2[n2]K

'. In this case the
value of the concatenation is the bitvector (an1�1; : : : ; a0;
bn2�1; : : : ; b0), where (an1�1; : : : ; a0) and (bn2�1; : : : ; b0)

are the values of t1[n1] and t2[n2] under ' or short Jt1[n1]K
' and

Jt2[n2]K
'. The interpretation of propositions is either true (>)

or false (?), as usual. For example, two terms are equal iff
their interpretations (values under an assignment) are equal.

2.4 Circuit View

A bitvector formula can be viewed as a word-level circuit,
i.e. a conjunction of propositions with a variable on the left
hand side and a simple term on the right hand side. This
view will ease the understanding of the linearization proce-
dure later.
More precisely, a general bitvector formula f is a conjunc-
tion of propositions P where each proposition p 2 P con-
sists of two terms tl and tr, one on the left hand side, one
on the right hand side. It can be transformed into a sim-
ple bitvector formula by introducing intermediate variables.
For tl, tr and each of their sub-terms intermediate variables
are defined recursively. For each of them an equations rep-
resenting the operation at the current level is added to the
toplevel conjunction.
As an example consider the bitvector formula resulting from
the RTL in fig. 4: (a+ b = c+ (d << 4)) ^ (a+ b � d).

1Both, summation over a set of terms and addition of two terms are
defined to clarify the importance of special linearization rules for each op-
erator, although summation would have been sufficient.

2Multiplication with one input constant.
3Negation is viewed as arithmetic operation because it is defined on

terms.
4Zero extend is performed implicitly in Verilog.
5Sign extend is needed to model properties, but is not part of Verilog.



t[n] ::= BV[n] j CBV[n] j (:t[n]) j (t[n] + t[n]) j (
P

k�1
i=0 t

i

[n]) j (c � t[n]) j (t[m] 
 t[o])jn=m+o
j (t[m][p; q])jn=p�q+1;m>p�q j (t[n] >> p) j (t[n] << p) j (t[m] ZE p)jn=p;p�m j (t[m] SE p)jn=p;p�m

proposition ::= > j ? j t[n] = t[n] j t[n] 6= t[n] j t[n] � t[n] j t[n] � t[n] j t[n] < t[n] j t[n] > t[n]
formula ::= proposition j (proposition ^ formula)

(1)Figure 2. Syntax of a Bitvector Logic

Variable: Jx[n]K
'
= '(x[n])

Constant: J1[1]K
'
= (1)

J0[1]K
'
= (0)

J1c[n]K
'
= (1; cn�1; : : : ; c0) with (cn�1; : : : ; c0) = Jc[n]K

'

J0c[n]K
'
= (0; cn�1; : : : ; c0) with (cn�1; : : : ; c0) = Jc[n]K

'

Negation: J:t[n]K
'
= (an�1; : : : ; a0) with (an�1; : : : ; a0) = Jt[n]K

'

Concatenation: Jt1[n1] 
 t2[n2]K
'
= (an1�1; : : : ; a0; bn2�1; : : : ; b0) with

(an1�1; : : : ; a0) = Jt1[n1]K
'; (bn2�1; : : : ; b0) = Jt2[n2]K

'

Extraction: Jt[m][p; q]K
'
= (ap; : : : ; aq) with

(am�1; : : : ; a0) = Jt[m]K
'; 0 � q � p < m

Shift left: Jt[n] << pK' = Jt[n][n� 1� p; 0]
 0[p]K
'

Shift right: Jt[n] >> pK' = J0[p] 
 t[n][n� 1; p]K'

Zero extend: Jt[m] ZE pK' = J0[p�m] 
 t[m]K
'

Sign Extend: Jt[m] SE pK' = (ap�1; : : : ; a0) with
(bm�1; : : : ; b0) = Jt[m]K

'

ai = bi8i 2 f0; : : : ;m� 1g

ai = bm�18i 2 fm; : : : ; p� 1g

Addition: Jt1[n] + t2[n]K
'
= vecn(natn(Jt

1
[n]K

'
) + natn(Jt

2
[n]K

'
))

Sum: J
P

k�1
0 ft0[n]; : : : ; t

k�1
[n] gK

'
= Jt0[n] + (t1[n] + � � � (tk�2

[n] + tk�1
[n] ) � � �)K'

Scalar Multiplication: Jc � t[n]K
'
= Jt1[n] + t2[n] + � � �+ tk[n]K

' with ti[n] = t[n] if k > 0

= 0[n] if k = 0 and 2
n > k �2n c

True: J>K' = >

False: J?K' = ?

Equal: Jtn1 = tn2 K
'
= > iff Jtn1 K

'
= Jtn2 K

'

Inequal: Jtn1 6= tn2 K
'
= > iff Jtn1 K

'
6= Jtn2 K

'

Greater: Jtn1 > tn2 K
'
= > iff natn(Jtn1 K

'
) > natn(Jt

n

2 K
'
)

Less: Jtn1 < tn2 K
'
= > iff natn(Jtn1 K

'
) < natn(Jt

n

2 K
'
)

Greater of Equal: Jtn1 � tn2 K
'
= > iff Jtn1 = tn2 K

'
_ Jtn1 > tn2 K

'

Less or Equal: Jtn1 � tn2 K
'
= > iff Jtn1 = tn2 K

'
_ Jtn1 < tn2 K

'

(2)

Figure 3. Semantics of Bitvector Operators and Propositions
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Figure 4. Word-Level Circuit

It will be transformed into:
t1 = t2

^ t1 � d
^ t1 = a+ b
^ t2 = c+ t3
^ t3 = d << 4

An intermediate variable is defined for each internal signal
of the circuit. This obviously does not change the satisfi-
ability of the formula. Without loss of generality simple
bitvector formulas will be referred to as bitvector formulas
in the sequel.

2.5 Integer Linear Constraint Problems
Within the framework proposed, bitvector formulas are
translated into equivalent integer linear constraint prob-
lems (ILPs). An ILP is a conjunction of linear arith-
metic constraints (LACs). A LAC has either the formP

1�i�n
aixi = c (equality constraint) or

P
1�i�n

aixi �

c (inequality constraint). All ai and c are integer con-
stants. The variables xi are implicitly constrained to be non-
negative. With x0 = 1 a conjunction of LACs, an ILP, can
be written as the following (Presburger) formula 6:

9x1; x2; : : : ; xn :

�V
s

0 =
P

j
csjxj

�

^

�V
t

0 �
P

j
ctjxj

�
; x0 = 1

(3)

It contains s equality and t inequality LACs overn variables
xj . The constants csj and ctj are the coefficients of the vari-
able xj in the s’th and t’th LAC, respectively. A solution of

6Note that eq. 3 only involves existential quantification and conjunc-
tion, but neither universal quantification, disjunction, nor negation.



an ILP is an assignment to the variables x1; x2; : : : ; xn such
that all LACs are satisfied. Solving an ILP is equivalent to
checking eq. 3 for satisfiability:
Many efficient ILP solvers exist, running in polynomial
time for many cases, however solving ILPs in its general
form is an NP-complete problem [14].
In the following, we use the Omega test [12], however any
ILP solver can be used. There are even automata theo-
retic approaches, translating ILPs into concurrent number
automata (CNA) and checking for non-emptiness of the ac-
cepted language [17, 15].
The Omega test first performs preprocessing, including
elimination of equality constraints and unbound variables,
normalization of the constraints, and checks for directly
contradictory or redundant constraints. All of these steps
have polynomial time bounds [12]. The core procedure is
a polyhedra approach, where the problem is subsequently
reduced in dimension, first checking for real solutions and
then, if they are present, for integer solutions. It relies on
Fourier-Motzkin variable elimination [4], which can be ex-
pensive. But the cases where it does appear to be rare in
practice [12].

3 Linearization
To use the Omega test, a given (simple) bitvector formula
is translated into an ILP. The idea is to convert a bitvector
formula f into a conjunction of linear constraints such that
the linear constraint problem (see eq. 3) has a solution iff f
has a solution. A one-to-one mapping of bitvector variables
to linear variables is used, such that the solutions of the
bitvector problem can be calculated from the solutions of
the ILP. In the following for each operation the correspond-
ing transformation is given. Then the overall algorithm flow
becomes very simple, since only the corresponding rule has
to be applied.

3.1 Modeling of Modulo in ILP
Since operations on bitvectors are performed modulo, a pos-
sible overflow will be discarded. In general, operations on
bitvectors are performed modulo 2

vector width. Therefore
the modulo operator has to be modeled in integer linear
arithmetic. Some operations require to discard some of the
least significant bits which could be resembled by integer
division. Neither modulo nor division is part of integer lin-
ear arithmetic.
But using quasi linear constraints they can be modeled as
follows: Consider an equality e = � mod m with e �

m � 1 in the natural domain. This can be written without
the modulo operator as 0 � � � m� � m � 1, e = � �
m�;m = const, with no constraints to �. (This is basically
the definition of the modulo operator.) For integer division
the procedure is similar: e = � div m as 0 � � �m� �
m� 1; e = �;m = const.
Since in the bitvector domain all variables have a finite do-
main, � can be constrained:
a = nat(b[y])mod 2

x
, 0 � b� 2

x�
^ b� 2

x� � 2
x
� 1

^ a = b� 2
x�

^ a � 2
x
� 1

^ b � 2
y
� 1

^ � � 2
y�x

� 1

a = nat(b[y]) div 2
z
, 0 � b� 2

za � 2
z
� 1

^ a � 2
y�z

� 1

^ b � 2
y
� 1

Linearization techniques are given for single bitvector op-
erators, propositions and formulas. The following notation

for the conversion is used:
bitvector term to be converted

converted integer term along with constraints

The integer term is build over integer variables. All linear
variables are non-negative by definition. This is not a re-
striction, it just saves some of the writing.

3.2 Linearizing Terms
All terms occurring in a simple bitvector formula are simple
terms, i.e. they involve just variables, constants and one op-
erator. Therefore linearization of simple terms is sufficient.
Each operator in eq. 1, fig. 2 is translated into LACs. A
bitvector a[x] and a constant bitvector c[x] can be translated
into a linear variable as follows:

a[x]

a with a � 2
x
� 1

c[x]
nat c[x]

Conversion of negation of a bitvector is also fairly simple.
:a[x]

2
x
� 1� a with a � 2

x
� 1

Addition of two bitvectors can be translated as follows:
a[x] + b[x]

a+ b� 2
x� with a+ b� 2

x� � 2
x
� 1 ^ � � 1

More general, for the sum of at least one bitvector (n > 0)
it holds:

nX

i=1

a[x]
i

P
n

i=1
ai � 2x� with

P
n

i=1
ai � 2x� � 2x � 1 ^ � � n� 1

Note that subsequent addition of i terms yields a different
linearization result than summation. In the first case i sigma
variables with a domain of f0; 1g each are generated. Thus
there are 2

i possible combinations of values. In the latter
case only one sigma variable with a domain of [0; : : : ; i�1]

is needed. This obviously makes a big difference for large
i, and the search space for the ILP is much smaller for sum-
mation.
Multiplication with a constant bitvector c is just subsequent
addition. For scalar multiplication with c > 0 the following
rule is applicable:

ca[x]
ca� 2

x� with ca� 2
x� � 2

x
� 1 ^ � � c� 1

For extraction, right and left shift the rules are rather com-
plicated. For instance a shift to the right a[x] SR z cannot
be modeled as 2�za, since division and fractions of integers
are not part of ILP. Instead extraction and shift operations
are modeled using quasi linear constraints for modulo and
integer division. Left shift is modeled as a modulo opera-
tion followed by a multiplication with a power of 2:

a[x]<<z

k with k = 2zh ^ h = a � 2x�z� ^ k � 2z(2x�z � 1) ^
h � 2x�z � 1 ^ � � 2z � 1

A shift to the right is a division by a power of 2.
a[x]>>z

k with 0 � a� 2
zk � 2

z
� 1 ^ k � 2

x�z
� 1

The rule for concatenation of bitvectors is:
a[x] 
 b[y]

2
ya+ b with 2

ya+ b � 2
y+x

� 1



The rule for extraction is:
a[x][i; j]

k with k � 2
i�j+1

� 1 ^ a� 2
i+1� � 2

i+1
� 1 ^

a� 2
i+1� � 2

jk � 2
j
� 1 ^ � � 2

x�i�1
� 1

Sign extend is needed to extend the length of a bitvector
with a 2’s complement interpretation of it’s value. The
most significant bit (MSB) of a[y] is (a div 2

y�1
) and de-

termines the value of the (z � y) MSBs of (a[y] SE z).
The integer value representing them is (2

z
� 2

y
). The

value of (a div 2
y�1

) is either 0 or 1 and therefore (2
z
�

2
y
)(a div 2

y�1
) is either 0 or (2z � 2

y
). Consequently sign

extend is modeled as:
a[y] SE z

(2z � 2y)d + a with 0 � a� 2y�1
d � 2y�1

� 1 ^ d � 1

Since zero extend is just a syntactic feature, concatenation
of a constant bitvector and a term could be used. However,
it is useful to have a special rule for zero extend to save
variables and constraints:

a[x] ZE z

a with a � 2
x
� 1

3.3 Linearizing Propositions
Bitvector terms on the left and right hand side of a propo-
sition have the same length. Most of the propositions can
easily be translated, since e.g. a[n] � b[n] iff nata[n] �
natb[n]. The same applies for ’�’,’<’ and ’>’. Incorpo-
rating rules for those operators is therefore straightforward.
For ’6=’ things are a little bit more complicated, since it is
not part of ILP. Although Omega test can handle negation,
it is not desirable to keep it, since Omega test cannot deal
with it very well [13]. Using the additive inverse7, it fol-
lows that Æ[n] 6= 0[n] iff Æ[n] � 1[n]. Therefore: a[n] 6= b[n]
iff a[n] = b[n] +[n] Æ[n] with Æ[n] � 1[n]. New variables �; Æ
are introduced and a[n] 6= b[n] is modeled as:

a[n] 6= b[n]
a = b+ Æ � 2

n� with 1 � Æ ^ Æ � 2
n
� 1 ^ � � 1

3.4 Linearization of Bitvector Formulas
Based on the results above, a whole bitvector formula can
now be linearized recursively, such that sub-terms of a term
are linearized before the term.A bitvector formula is satis-
fiable iff the corresponding ILP is satisfiable. A solution
of the ILP can be translated into a solution of the bitvector
formula using the auxiliary function vecn.
To formally justify the correctness of the overall proce-
dure, the linearization techniques given above can be for-
malized as conversion functions, which can not presented
here. Roughly the arguments is as follows: A simple bitvec-
tor formula f is a conjunction of simple propositions p i.
The satisfiability of the formula f is preserved by a sound
modeling of each proposition pi. A bitvector proposition
pi is satisfiable iff it’s ILP p0

i
is satisfiable. The ILP f 0 of

a simple bitvector formula f is the conjunction of the ILPs
p0
i

of propositions pi, which are in turn conjunctions of ILP
constraints.
Furthermore, if the ILP f 0 is satisfiable and �0 is a solution,
an environment � of var(f) can be calculated such that it
satisfies f , i.e. JfK' = >.

7It always exists for bitvector addition.

Table 1. Comparison of commercial SAT
prover vs. ILP approach

Test case Hybrid Boolean Prover ILP (Omega)
# Input Vars # Gates CPU time CPU time

test a 35 493 0:70 < 0:01
fir 65 1081 59:17 < 0:01

test b 35 511 248:27 < 0:01
test c 35 511 182:83 < 0:01
long5 17 169 0:02 < 0:01
long6 23 283 0:04 0:01
long7 29 397 0:17 < 0:01
long8 35 511 1:55 < 0:01
long9 41 625 4:54 0:01
long10 47 739 20:79 < 0:01
long32 179 3247 1162:39 0:01

Table 2. Comparison of Chaff and ILP ap-
proach

Problem # SAT Vars # Clauses # Literals Chaff ILP
test a 530 1480 3452 10:91 < 0:01

fir 1148 3244 – Abort < 0:01
long5 196 532 1769 0:78 < 0:01
long6 308 850 1982 11:78 0:01
long7 428 1192 2780 64:43 < 0:01
long8 548 1534 3577 767:07 < 0:01
long9 668 1876 – Abort 0:01

To translate a formula, we have to linearize each of it’s
propositions. The order in which the propositions are lin-
earized is irrelevant. If there is term sharing, it is suffi-
cient to linearize each term once. The number of constraints
generated for a formula can be calculated easily. Our con-
version algorithm has a linear complexity in the number of
propositions and terms.

4 Experimental Results
The method described above has been implemented in C++
and has been integrated into an industrial RTL bounded
model checking framework (see fig. 5 for the overall flow)
developed at the formal verification group at Siemens, Ger-
many. For details on bounded model checking see [1]. All
results in the following are measured on a SUN Ultra Sparc
60 and all run times are given in CPU seconds. As ILP
solver the Omega test [12] has been used.
In a first series of experiments our technique based on ILP
is compared to an industrial high-performance multi-engine
SAT solver developed at Siemens, which automatically uti-
lizes different state-of-the-art solvers, like ATPG, BDD and
3-SAT. Each of the test cases shown in the upper half of
tab. 1 implements two versions of the same arithmetic func-
tion in Verilog-RTL. The property checks for their equiva-
lence.
For example, ’fir’ has two equivalent outputs, ’t1’ and ’t2’
which implement a shift/add function, commonly used in
digital filters:
module fir(a,b,c,d,e,f);

input [12:0] a; input [12:0] b;
input [12:0] c; input [12:0] d;
input [12:0] e; input [12:0] f;
wire [12:0] t1; wire [12:0] t2;
assign t1 = a + (b << 2’d1) + (c << 2’d2)

+ (d << 3’d3) + (e << 3’d4)
+ (f << 2’d2);

assign t2 = a+4’d2*(b+4’d2*(c
+ 4’d2*(d+3’d2*e)))

+4’d4*f;
endmodule
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The examples differ in structure as well as in the arithmetic
operators occurring. Although the examples appear to be
small – counted in the number of gates – they are difficult
to prove in the Boolean domain.
To show the scalability of approach, the examples ’long5’
through ’long10’ are the same design, scaled in the width
of the variables from 5 to 10 bit. The limits of the Boolean
packages were reached at 10 bit. The Omega test did not
show any growth in run time until it failed at 33 bit8 because
of variable width limitations. As can easily be seen, the ILP
solver obtains significant speed-ups compared to the high-
performance multi-engine solver.
Finally, a comparison to a pure SAT solver is given. In the
Boolean domain, Chaff [11] is by far the fastest available
public domain SAT solver as a recent study has shown [16].
The results are given in tab. 2. As can be seen, in this case
the ratio even becomes worse. For larger instances Chaff
was not able to find the result within the given time and
memory bounds.
In summary, a tremendous speed-up can be obtained by
solving the verification problem on the word-level instead
of the bit-level. While the bit-level problems turn out to be
very hard, the ILP solver never took more than a hundredth
of a second to terminate.

5 Conclusion

A method to check satisfiability of bitvector formulas has
been presented. The bitvector operators have a modulo se-
mantics as found in HDLs, like Verilog. Bitvector formulas

8Due to the limitations in the word size of the ILP prover, we had to
limit variable width to 16 to 32 bit. These limitations can be overcome
using integers of arbitrary length, instead of machine data types, within
Omega test or using techniques proposed by Fallah [6].

are translated into the integer domain, such that counterex-
amples for the resulting ILP-SAT problem can directly be
translated into counterexamples for the original problem.
There are no false positives or false negatives. The pro-
cedure has been integrated into an industrial RTL bounded
model checking framework. The Omega test is used as
ILP solver. The experimental results show that using this
technique, considerable performance gains over Boolean
provers can be achieved.
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