
Multi-output Timed Shannon Circuits�

Mitchell A. Thornton Rolf Drechsler D. Michael Miller
Mississippi State University University of Bremen University of Victoria

Mississippi State, Mississippi Bremen, Germany Victoria, BC, Canada

mitch@ece.msstate.edu drechsle@informatik.uni-bremen.de mmiller@csr.uvic.ca

Abstract

Timed Shannon circuits have been proposed as a synthesis ap-
proach for a low power optimization technique at the logic level
since overall circuit switching probabilities may be reduced. An
improvement in the application of this principle for multi-output
circuits is presented. Techniques that trade area for power reduc-
tion and a method for minimizing the overall circuit switching
probability are also included. Experimental results are given and
analyzed for these techniques.

1 Introduction

The introduction of timed Shannon circuits [5] was motivated
by the need to automatically synthesize circuits with low power
dissipation characteristics. In the original work on timed Shannon
circuits, problems involving the synthesis of multi-output Boolean
functions were noted and three methods for handling this situation
were proposed; the use of Multi-valued Terminal Binary Decision
Diagrams (MTBDDs) [3], time multiplexing of individual func-
tion outputs, and, the use of “disambiguation circuitry” necessi-
tating the detection of “shared” BDD graph portions.

Here an alternative method to these approaches is presented
by considering the representation of the characteristic function.
This approach allows for inherent BDD graph sharing to occur
and does not require time multiplexing of the circuit outputs or the
addition of extra disambiguating circuitry. An analysis of the extra
circuitry required to represent the characteristic function is given
and alternative techniques for area reduction are also presented.

In particular, the characteristic function of an n-input, m-
output Boolean function is represented in a BDD. Such character-
istic functions are traditionally represented as multi-valued input
(MVI), binary-valued output functions with the single MV input
representing the m Boolean outputs interpreted as an integer. In
the method presented here, the m binary outputs are represented
as non-terminal BDD vertices that are incorporated into the BDD
representing the function. It is shown that through use of simple
adjacent level variable swapping algorithms, a BDD can be for-
mulated that allows for the direct mapping method described in
[5] to be applied such that no conflicts occur in the circuit outputs.
Therefore, no disambiguation circuitry, timed output multiplex-
ing, or, shared BDD subgraph detection is required.

�This work was supported in part by NSF grants CCR-0000891 and CCR-
0097246

Several extensions of this technique are also examined. In par-
ticular, we incorporate a “mixed” form of BDD mapping that sac-
rifices some power savings for area minimization where internal
BDD vertices are either mapped as described in [5] or as the more
common 2:1 multiplexer mapping. We also incorporate an alter-
native cost function to the sifting algorithm that minimizes overall
switching probability rather than the overall BDD vertex count in
an attempt to further reduce power dissipation [6].

The next section provides a brief overview of the mapping tech-
nique originally proposed in [5] followed by a description of our
extension utilizing the characteristic function. Next, we describe
the “mixed” mapping method that sacrifices power minimization
for overall transistor count reduction in the resulting circuit. A
simple modification to the sifting algorithm that causes minimiza-
tion of switching probability is also described. Finally, experi-
mental results are given for a variety of benchmarks circuits and
conclusions are drawn.

2 Shannon Circuit Mapping

It is well known that the paths from the root of a BDD [1] to
a terminal represent a set of disjoint cubes and that for a given
variable assignment, a unique path is activated in the graph. This
principle, in conjunction with a circuit mapping technique that re-
places non-terminal vertices with combinational logic whose sig-
nals propagate from the top of the graph toward the terminal ver-
tices resulted in “timed Shannon circuits” as described in [5]. A
significant savings in dynamic power dissipation was noted for
such circuits since switching only occurs along two paths in the
resulting circuit when a new set of circuit inputs are applied; first
the previous path is switched off (all internal circuit nodes at logic-
1 go to logic-0) and then the new path is activated. The inclusion
of an “enable” signal ensures that only two paths are switched and
led to the name ”timed Shannon circuits”. A simple example is
shown in Figure 1.

It is noted that a variety of subcircuits can be used in addition to
the AND/OR in Figure 1 such as NAND/NAND, NOR/NOR and
AND/XOR as shown in Figure 2. These circuits all have dual-rail
ouputs, however a single-rail solution is easily obtained using a
cone detection algorithm with the initial dual rail solution. As an
example, Figure 3 contains the single-rail circuit corresponding to
the BDD in Figure 2.



x3

x2x2 x1x1 x1

x3

ff

x3

x2

x3

f f

x1x2x1x1

x2

x3

0
1

0

0 1

1

1 0

x3

x2x2 x1x1 x1

x3

ff

x3

x2x2 x1x1 x1

x3

ff

Figure 2: Various BDD Vertex Mappings

x1

x2

x3

0
1

0

0 1

1

1 0

x3

x2x2 x1x1 x1

x3

ff

x2x1 x1

x3

f

Figure 3: Cone Detection and Single-Rail Output Circuit

7GAT
0

1

0

0
1

1

1 0

01

2GAT

6GAT

3GAT

7GAT7GAT

2GAT 2GAT

6GAT 6GAT

3GAT 3GAT

23GAT 23GAT

enable

Figure 1: Timed Shannon Circuit Using AND/OR Mapping

2.1 Characteristic Function

A Boolean function, f : B
n ! B

m may be represented by
a characteristic function, F : B

n+m ! B, whose on-set, FON ,
corresponds to a complete cover of the truth table for f and all
remaining points in B

n+m are considered to be members of the
set, FOFF . In terms of a BDD representation, the original BDD
representing f is augmented with the inclusion of m non-terminal

vertices corresponding to each unique output (these are referred to
as “output nodes” for brevity). Figure 4 shows how the BDD for
f can be augmented to form one for F .

By applying the circuit synthesis method reported in [5] to the
BDD for F , inherent subgraph sharing occurs for all distinct out-
puts of f . The only modification is the mapping that corresponds
to the m added “output nodes”. In this case each output node is
mapped to an multi-input OR gate (or tree of OR gates) whose
output provides the overall circuit output.

2.2 Mixed Mapping Technique

In the mapping technique described in the previous section the
resulting size of the netlist is dependent upon the size of the BDD
representing the characteristic function. This provides motivation
for reducing the size of the BDD. One approach is to form a group
of output vertices in the BDD and then to perform group sifting [9]
to position the output variables such that the overall BDD is mini-
mal in size. In general the output variables are positioned in an in-
termediate level of the BDD. In this case all non-terminal vertices
below the output nodes are mapped to 2:1 multiplexer structures
while all those above are mapped as described previously.

It is easily shown that output nodes appearing at the top or bot-
tom level of a BDD representing a characteristic function may
only occur with unity multiplicity. However, when the output
nodes reside in the middle of the characteristic function BDD, a



f1 f2

f1 f2

f1 f2

Figure 4: Creation of the Characteristic Function BDD

given output vertex may appear several times. In this case, the
mapping procedure for the outputs must modified as shown in Fig-
ure 5.

x1 x2

fi

fi fi

Figure 5: Output Node Mapping in Mixed Case

The mixed mapping method sacrifices some of the savings
in power dissipation that originally motivated the development
of timed Shannon circuits since those vertices below the output
nodes are mapped to multiplexers. However, savings can result in
terms of the overall BDD size and the critical path length of the
resulting circuit.

2.3 Minimization of Switching Probability

Dynamic power dissipation of static CMOS circuitry is charac-
terized by current spikes that occur when an internal net charges
or discharges. Because this occurs when the input signals change
value which, in turn, cause internal circuit nets to also change their
logic values, the switching probability, Psw can be used to com-
pute power dissipation measures. In general, Psw is difficult to
compute without some knowledge of the temporal correlation of
the input sequence [7]. If it is assumed that all inputs are equally
likely to change in a statistically independent manner, a worst-
case estimate for Psw may be computed based on the structure of
a BDD.

The sifting algorithm [11] can be modified to minimize the sum
of all the Psw estimates at each vertex rather than the BDD size
as described [6]. A version of the mapping tool described above
was created that incorporated this type of minimization and exper-
imental results are provided for this case in the next section.

The output probability of a Boolean function f , denoted as
P [f ] is the probability that f has a value of “1” at some arbitrary
time of observation [10] [2] [4]. Consider a function f having
the output probability P [x] for the input variable x and the output
probabilities P [f0] and P [f1] for the corresponding cofactors f0
and f1. In terms of a BDD, this relationship is shown in Figure 6.

P[f ] P[f ]

f

P[x]

0 1

x
10

Figure 6: Switching Probability in BDD Vertex

The switching probability, Psw [f ] of f , is the parameter of in-
terest. Switching occurs if and only if the value of f changes
from 0 to 1 or 1 to 0. We note that the probability that a func-
tion is 0-valued is given as the probability that the variable, x and
the cofactor f0 are 0-valued or that the variable, x is 1-valued but
the cofactor, f1 is 0-valued. A similar statement can be made for
the probability that f = 1. These relationships are given in the
following equations.

(1� P [x])(1� P [f0]) + P [x](1� P [f1]) for f = 0 (1)

(1� P [x])P [f0] + P [x]P [f1] for f = 1 (2)

Now, consider the value of f at two different observation times
f
t1 and f

t2. f is considered to “switch” if the value of f t1 6=
f
t2. Table 1 enumerates the possible states of f at two subsequent

observation times, t1 and t2:
It is now possible to derive an upper bound of the switching

probability based on the output probabilities given in Table 1.
This is a worst-case value since there are inherent assumptions on
the uncorrelated input signals to the circuit. Hence the switching
probability Psw [f ] of f can be computed as:

Psw[f ] = P [f
t1

= 0 \ f
t2

= 1] + P [f
t1

= 1 \ f
t2

= 0] (3)



P [f
t1 \ f

t2
] f

t1
f
t2

((1� P [x])(1� P [f0]) + P [x](1� P [f1]))
2 0 0

((1� P [x])(1� P [f0]) + P [x](1� P [f1]))((1� P [x])P [f0] + P [x](P [f1])) 0 1
((1� P [x])P [f0] + P [x](P [f1]))((1� P [x])(1� P [f0]) + P [x](1� P [f1])) 1 0

((1� P [x])P [f0] + P [x](P [f1]))
2 1 1

Table 1: Probabilities at Subsequent Observations.

Using the expression in Table 1 and substituting them into
Equation 3, we have the result:

Psw[f ] = 2((1� P [x])(1� P [f0]) + P [x](1� P [f1]))

�((1� P [x])(P [f0]) + P [x](P [f1])) (4)

Equation 4 is expressed in terms of cofactors making it easy
to compute during the adjacent level changes of variable nodes
that occur when a BDD is undergoing sifting. By keeping the
overall sum of the Psw values at each BDD vertex an estimate
of switching activity in the mapped circuit can be obtained. The
sifting algorithm was modified to use Ptot =

P
jEj Pswi

as a value
to be minimized where jEj is the total number of edges in the
BDD rather than the usual metric of the overall vertex count, jV j.
This modified cost function allows the BDD to grow in size during
the sifting process, however excessive growth is not noted since
the addition of new vertices leads to the addition of more P swi

values in the accumulated Ptot.
As is shown in the results section, the BDDs typically increase

in size by a small amount and in some cases the use of the modi-
fied cost function allows for a smaller BDD to result as compared
to the use of traditional sifting.

2.4 Multivalued Logic

This technique may easily be generalized to handle the case of
multivalued logic (MVL). While BDDs are the most popular deci-
sion diagram structure, there has also been interest in multivalued
decision diagrams (MDDs) [8] [12]. In producing a circuit com-
posed of MVL gates, it is assumed the following basic gate types
are available:

� MIN gates - the gate output is minimum of its input values

� MAX gates - the gate output is maximum of its input values

It is also assumed that the characteristic functions are available
for each of the primary inputs, that is the set of J j(xi) values
such that Jj(xi) = k � 1 if xi = j, and Jj(xi) = 0 other-
wise. The edges of an ordered MDD are mapped to small sets
of MVL logic gates, producing a k-output circuit. If the MVL
function being computed is f(X), then the k outputs of the result-
ing circuit correspond to the characteristic functions of f , that is,
J0(f(X)); : : : Jk�1(f(X)). The circuit thus outputs a form of a
1-of-k code, where the i

th output of the circuit is logically true
if and only if the decision diagram would evaluate to logic value
i. The resulting circuit provides output in a 1-of-k form for a di-
agram operating on k-valued logic, and the circuit size is linear

in the size of the original MDD, allowing the mapping technique
to take full advantage of any advances in the area of decision dia-
gram minimization.

3 Experimental Results

These techniques are implemented using the CUDD package
[14] and options are included to map to AND/OR, NAND/NAND,
NOR/NOR and AND/XOR subcircuits. After netlist mapping oc-
curs, a secondary traversal of the netlist is invoked and circuit
simplifications are performed where possible reducing the over-
all gate count. Output is generated as both a logic gate and as a
SPICE transistor level netlist (the SPICE netlist utilizes a library
of static CMOS logic gate cells). A maximum fanin parameter
allows for the control of the size of the logic gates. For example,
during AND/OR based mapping, very large OR gates can result
since a single input is required for each BDD edge that points to a
common vertex. By limiting the gate fan-in, a large m-input OR
gate is replaced by a tree of OR gates.

Experimental results showing the resulting area of mapped
benchmark circuits when the characteristic function is used and all
output vertices are shifted to the bottom of the graph are given in
Figure 2. All circuits were verified to be functionally equivalent to
the original netlist by using the SIS command verify -m bdd [13].
The columns labeled ORIG. SIZE and CHAR. SIZE refer to the
size of the BDD representing the function and that representing
the characteristic function when all output vertices are shifted to
the bottom of the graph and the other non-terminal vertices have
been sifted. The column labeled TIME contains the amount of
CPU time required to parse the original netlist, convert to a BDD
and then the characteristic function BDD, move the output nodes
to the bottom of the graph, invoke sifting and finally to generate
the output netlist. The remaining columns indicate the number of
logic gates and the transistor count of the resultant output netlists.

To reduce the size of the BDD representing the characteristic
function and hence the resulting mapped netlist, the mixed map-
ping method was also implemented where a group is formed for
the output vertices and they are positioned in the overall BDD so
as to minimize the total node count. Table 3 contains the BDD
size and netlist component count when this method is used.

In the next set of results shown in Table 4, the technique for
minimizing the sum of the switching probabilities (assuming sta-
tistical independence and equally likely switching of the input
variables) was used as a cost function for minimizing the BDD
representing the characteristic function. These results were then
mapped to netlists using the technique previously described and



Table 2: Mapping Results Using the Characteristic Function

ORIG. CHAR. NAND/ NOR/ AND/ AND/
NAME SIZE SIZE TIME NAND NOR OR XOR

GATES TRANS. GATES TRANS. GATES TRANS. GATES TRANS.
C17 7 13 0.01 16 68 23 76 17 68 17 102
C432 1210 1409 0.33 15776 4068 15790 4075 14006 3172 20642 3172
C499 26408 105320 129.2 304262 1163084 304294 1163148 276874 1108320 276874 1732858
C880 8412 12745 5.54 37889 150106 37922 150172 30105 134642 202164 30105
C1355 29562 108680 135.1 315663 1215422 315695 1215486 291642 1167392 29164 1845690
C1908 6253 24022 12.73 68940 264496 68965 264546 61700 250058 61700 390086
C2670 3981 6145 5.16 17072 65140 17137 65270 14387 59800 14387 91168
C3540 23829 58545 51.47 165056 621328 165080 621376 124561 540444 124561 769048
C5315 1778 11211 5.59 30668 118136 30844 118488 24448 105760 24448 159514
C7552 8408 13002 11.94 38100 151230 38212 151454 34242 143568 34242 228768
pair 3442 9193 3.84 24937 95632 25073 95904 18244 82332 18244 119164
vda 497 1260 0.16 2977 10906 3016 10984 2049 9078 2049 12588
des 3041 9468 2.19 25577 99976 25957 100736 20868 90584 20868 138388
rot 6008 8783 2.90 24736 96746 24845 96964 20068 87468 20068 133188

Table 3: Mapping Results for the “Mixed Mapping” Method

CIRCUIT BDD BDD TOTAL NET.
NAME SIZE DIFF. GATES DIFF.
C17 13 0.0 17 0.00
C432 1409 0.0 3393 -75.7
C499 105320 -2.0 284234 2.7
C880 11674 -8.0 33732 12.1
C1355 108680 0.0 296357 1.6
C1908 24022 0.0 63028 2.2
C2670 6115 -9.8 14763 2.6
C3540 58547 0.0 133287 7.0
C5315 3541 -68.4 7581 -69.0
C7552 10397 -20.0 28676 -16.3
pair 7119 -22.6 15460 -15.3
vda 776 -38.4 1700 -17.0
des 5495 -42.0 11955 -42.7
rot 8069 -8.1 20704 3.2

the resulting size of the BDDs and netlists are compared when us-
ing sifting for BDD size reduction. It is noted that some of the
resulting BDDs are actually smaller since the criteria of minimiz-
ing Psw allows the BDD to grow in size during the minimization
process hence allowing it to escape a local minimum (in terms of
graph size) that it would otherwise be forced to converge to with
conventional BDD sifting. This table contains columns giving the
benchmark circuit name, followed by the sizes of the BDDs and
netlists for each minimization method respectively.

4 Conclusions

Extensions of the technique for producing timed Shannon cir-
cuits based on the use of a BDD representing the characteris-
tic function of a multi-output circuit have been presented. This
method has some advantages over the originally proposed meth-
ods for dealing with multi-output circuits since time multiplexing
of outputs may be avoided and the use of “shared graph” detection
algorithms and disambiguation circuitry is not required. Exten-
sions to the mapping method in the form of a “mixed mapping ”

approach and a modified sifting procedure for reducing estimated
switching probabilities were also presented. Experimental results
were provided for moderately sized benchmark functions to illus-
trate the utility of the approach.

References

[1] R.E. Bryant. Graph - based algorithms for Boolean function
manipulation. IEEE Trans. on Comp., 35(8):677–691, 1986.

[2] S. Chakravarty. A testable realization of CMOS combina-
tional circuits. In Int’l Test Conf., pages 509–518, 1989.

[3] E.M. Clarke, K.L. McMillan, X. Zhao, M. Fujita, and
J. Yang. Spectral transforms for large Boolean functions
with application to technology mapping. In Design Automa-
tion Conf., pages 54–60, 1993.

[4] R. Krieger. PLATO: A tool for computation of exact signal
probabilities. In VLSI Design Conf., pages 65–68, 1993.

[5] L. Lavagno, P. McGeer, A. Saldanha, and A.L. Sangiovanni-
Vincentelli. Timed shannon circuits: A power-efficient de-
sign style and synthesis tool. In Design Automation Conf.,
pages 254–260, 1995.

[6] P. Lindgren, M. Kerttu, and M. A. Thornton. Low power op-
timization technique for bdd mapped circuits. In Int’l Work-
shop on Logic Synth., pages 221–230, 2000.

[7] R. Marculescu, D. Marculescu, and M. Pedram. Efficient
power estimation for highly correlated input streams. In De-
sign Automation Conf., 1995.

[8] D. M. Miller and R. Drechsler. Implementing a multiple-
valued decision diagram package. In Int’l Symp. on Multi-
Valued Logic, 1998.

[9] S. Panda and F. Somenzi. Who are the variables in your
neighborhood. In Int’l Conf. on CAD, pages 74–77, 1995.



Table 4: Comparison of Resulting Netlists When Minimizing
BDD Size Versus Psw

CIRCUIT Minimized Area Minimized Psw
5xp1 123 214 111 207
alu4 903 2150 903 2152
apex1 2357 4182 2392 4266
apex2 531 1485 561 1330
apex4 1488 3189 1488 3189
apex5 1624 3291 1703 3322
b12 89 156 88 153
bw 173 214 173 204
clip 149 330 136 309
con1 20 35 20 35
cordic 84 198 84 198
cps 2543 3709 2641 3435
duke2 688 793 688 961
e64 2212 2208 2212 2143
ex1010 2090 4998 2110 5056
ex4p 560 1322 638 1492
ex5p 709 1111 682 1048
inc 66 102 66 102
misex1 77 115 76 115
misex2 184 214 188 197
misex3 833 1546 825 1543
misex3c 802 1865 792 1865
o64 133 473 133 473
pdc 4642 10290 4642 10290
rd53 34 64 34 64
rd73 54 124 54 124
rd84 77 170 77 170
sao2 113 313 113 216
seq 2423 4286 2424 4316
spla 222 223 222 179
sqrt8 46 81 46 81
squar5 63 86 66 88
t481 35 88 35 88
table3 1725 2886 1725 2886
table5 1821 3146 1822 3150
vg2 235 419 222 391
xor5 12 26 12 26

[10] K.P. Parker and E.J. McCluskey. Analysis of logic circuits
with faults using input signal probabilities. IEEE Trans. on
Comp., 24:573–578, 1975.

[11] R. Rudell. Dynamic variable ordering for ordered binary de-
cision diagrams. In Int’l Conf. on CAD, pages 42–47, 1993.

[12] T. Sasao and J.T. Butler. A method to represent multiple-
output switching functions by using multi-valued decision
diagrams. In Int’l Symp. on Multi-Valued Logic, pages 248–
254, 1996.

[13] E. Sentovich, K. Singh, L. Lavagno, Ch. Moon, R. Mur-
gai, A. Saldanha, H. Savoj, P. Stephan, R. Brayton, and
A. Sangiovanni-Vincentelli. SIS: A system for sequential
circuit synthesis. Technical report, University of Berkeley,
1992.

[14] F. Somenzi. CUDD: CU Decision Diagram Package Release
1.1.1. University of Colorado at Boulder, 1996.


