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ABSTRACT 
Spectral techniques have found many applications in computer-
aided design, including synthesis, verification, and testing. 
Decision diagram representations permit spectral coefficients to 
be calculated via graph-based algorithms. In this paper, 
algorithms are described for transforming multi-output functions 
to produce Walsh, arithmetic, and Reed-Muller spectral decision 
diagrams and the experimental results of those implementations 
are presented.   

Categories and Subject Descriptors 
B.6.3 [Logic Design]: Design Aids – automatic synthesis, 
optimization, switching theory, verification. 

J.6. [Computer-Aided Engineering]:  Computer -aided design. 

General Terms 
Algorithm, Design, Verification. 

Keywords 
Data Structures, Decision Diagrams, Discrete Functions, Spectral 
Methods. 

1. INTRODUCTION 
Spectral methods and decision diagrams have been applied to 
many areas of digital systems design. These include synthesis [3, 

10, 11, 15], function classification [11], partitioning techniques 
[24], verification [13, 16, 22], and testing [20]. Spectral 
techniques can offer a view of a problem that illuminates 
different properties than are readily evident in the functional 
domain. Traditionally, the computational costs of spectral 
coefficients have been too high for many of these techniques to 
see practical application using linear algebra-based methods of 
computation or fast transform techniques [11]. 

Decision diagrams [1, 4] are the state-of-the-art representation 
for Boolean functions in Computer-Aided Design (CAD) 
applications. It is thus very attractive to consider decision 
diagrams when considering alternatives such as spectral 
techniques. This paper concentrates on transforming functional 
decision diagrams into spectral decision diagrams, a fundamental 
step in the application of spectral techniques to any area.  

The use of decision diagrams as a compact representation of 
discrete functions provides for a variety of ways that spectra may 
be computed or represented [6, 7, 8, 14, 18, 19, 21, 23]. The 
differences between the transformation operations described here 
and previous techniques is that here multi-output functions 
represented as shared decision diagrams are transformed 
simultaneously with respect to each output in contrast to 
processing each output individually and the incorporation of a 
caching mechanism during the transformation procedure that 
allows for significant decreases in computer runtime.  

The description of the implementation of graph-based spectral 
transformation algorithms for decision diagrams representing 
multi-output circuits is included and experimental results of 
these implementations for the Walsh, the arithmetic, and the 
Reed-Muller spectra are provided. Additionally an improvement 
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to the algorithm provided by caching "skipped" nodes during 
decision diagram traversals is also implemented and those results 
are presented in comparison with the result of the original 
algorithms [14, 21]. 

The organization of this paper is as follows. Section 2 contains 
the necessary background information. Section 3 explains the 
multi-output algorithm through pseudo-code and then illustrates 
it with an example for a small multi-output circuit. Section 4 
presents the experimental results including the number of nodes 
and coefficients for the resulting spectral decision diagrams and 
also the runtimes needed for the transformations. Section 5 
provides concluding remarks on the work presented.  

2. BACKGROUND 
In the method described here, a multi-output circuit represented 
as a Binary Decision Diagram (BDD) is transformed into a 
Spectral Decision Diagram (SDD). The resulting SDD is 
represented as a Multi-Terminal Binary Decision Diagram 
(MTBDD) [3] in which each non-terminal node has two outgoing 
edges, one edge representing the Boolean value 0 and the other 
edge representing the Boolean value 1. No edge 
complementation is used within the MTBDD. It is possible to 
further reduce the size of the SDD using edge negations as 
described in [14]. The terminal nodes of the MTBDD can take on 
any integer value allowing for the representation of spectral 
coefficient values at the terminal nodes.  

Traversing the decision diagram and transforming each Shannon 
node encountered with the 2x2 matrix for the desired transform 
accomplishes the transformation from the Boolean domain to the 
spectral domain. When all nodes have been transformed in this 
way the result is the SDD for the circuit with the spectral 
coefficients present at the terminal nodes. A recursive Kronecker 
product definition [9] is used in the algorithms as follows in 
Equation (1). 
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G in Equation (1) is replaced by the appropriate matrix from 
those given in Equation (2) depending on the transformation 
desired, either the Walsh (W), the arithmetic (A), or the Reed-
Muller (M). 
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Recall that the Walsh and the arithmetic transforms are applied 
over the integer field, while the Reed-Muller transform is 
applied over GF(2).  

A noteworthy fact is that SDDs describing the arithmetic 
transform of a function are in fact Binary Moment Diagrams 
(BMD) [2] and that Reed-Muller SDDs are Functional Decision 
Diagrams (FDD) [5, 12] without the presence of complemented 
edges. The inverse transforms can also be easily implemented 
allowing for techniques to transform directly from BDDs to 
FDDs and from BDDs to BMDs and vice versa. It is easy to see 
that BMDs result from the application of the arithmetic 

transform since examination of the 2x2 matrix in Equation (2) 
results in a pseudo-Boolean decomposition of the original 
function and likewise, the Reed-Muller transformation is actually 
a matrix representation of a positive-Davio decomposition.  

The transformation occurs in a depth-first fashion, and no node 
can be transformed until all nodes below it have been 
transformed. Special consideration must be given to those 
portions of the BDD in which a variable is present in both 
polarities and thus is not present on the path, a so-called 
"skipped" node. The nodes below this "skipped" node must be 
transformed as if the "skipped" node was present. It is often the 
case that "skipped" nodes occur in BDDs since this results from 
the application of the reduction rules. The fewer the number of 
skipped nodes in a BDD, the more closely the BDD approaches 
an exponentially sized Shannon expansion tree.  

3. METHODOLOGY 
The following pseudo-code illustrates the implementation of the 
graph-based transformation algorithm for multi-output functions. 
This is the framework for the technique used for all three 
algorithms by including the appropriate terminal manipulations 
after the check for terminal nodes in the else and then branches 
of the pseudo-code. For each output the pointer to the top node 
for that output is passed to a traversal function that controls the 
transformation. The pseudo-code for this traversal code is shown 
below.  

Traverse (f) 
   if (f is a terminal node) return 
  Low = Traverse (Low(f)) 
  High = Traverse (High(f)) 
  LowTemp = TransformLow(Low, High) 
  HighTemp = TransformHigh(Low, High) 
  return (NewNonterminal(Index(f), HighTemp, LowTemp)) 
 
The TransformLow and TransformHigh transformation functions 
are identical except for the action taken once the terminal nodes 
are reached. For illustration the code for TransformLow that 
transforms the else-child is shown below followed by the specific 
terminal manipulations in pseudo-code for the terminal branches 
of all three transforms. The TransformLow function has four 
possible courses of action: 1) if both nodes are terminal nodes it 
performs the required manipulation and returns the new terminal 
node; 2) if both nodes are non-terminal nodes at the same level, a 
new node is formed with children found by transforming the 
corresponding children of the two original nodes; 3) if the level 
of the else-child is greater than the level of the then-child, a 
"skipped" node is present in the else branch and must be 
considered; and 4) if the level of the then-child is greater than the 
level of the else- child, a "skipped" node is present in the then 
branch and must be considered. Detail of the handling of skipped 
nodes is given in the following pseudo-code.  

TransformLow(g, h) 
    if (g and h are terminals)  
       return (appropriate new terminal manipulation) 
   else if (Level(g) = Level(h)) 
       return (NewNonterminal(Index(g), TransformLow(Low(g),  
                  Low(h)), TransformLow(High(g), High(h)))) 



   else if (Level (g) > Level (h)) 
       return(NewNonterminal(Index(h), TransformLow(Twice(g), 
      Low(h)), High(h)))                     
   else (Level(g) < Level (h)) 
       return (NewNonterminal(Index(g), TransformLow(Low(g), 
                  Twice(h)), High(g))) 
 
For the Walsh transform the appropriate manipulation in the 
TransformLow function of the pseudo-code is as follows.  

return (NewTerminal(Value(g) + Value(h))) 

For the TransformHigh function of the Walsh transform the 
pseudo-code is as follows.  

return (NewTerminal(Value(g) - Value (h))) 

The arithmetic transform TransformLow function terminal 
manipulation is described by the following pseudo-code.  

return (NewTerminal (Value(g) + 0)) 

For the TransformHigh function the arithmetic transform pseudo-
code is as follows.  

return (NewTerminal (Value(h) - Value(g))) 

The TransformLow function for the Reed-Muller transform uses 
the same terminal manipulation as the TransformLow function 
for the arithmetic transform. The TransformHigh function for the 
Reed-Muller transform uses the TransformLow function from the 
Walsh transform stated above although the Reed-Muller 
transform is applied over GF(2). 

"Skipped" nodes within the diagram must be considered, and 
their children transformed as if they were present. As this 
allowance must be made when transforming both the else-child 
and the then-child, an improvement was made to the original 
algorithm providing for caching of the result of a "skipped" node 
when it is first encountered so that the result is available on the 
subsequent encounter. Caching the result of this computation 
resulted in significant decreases in the computation time required 
for transformation as shown in Section 4.  

For illustration of the algorithm, a small multi-output circuit with 
two outputs representing an AND gate and an OR gate is shown 
as a BDD in Figure 1. As is common in spectral transformation 
[11], the function is represented with +1denoting logic 0 and -1 
denoting logic 1. In Figure 2, the multi-output circuit with 
f1=x1x2 and f2=x1+x2 is shown undergoing Walsh transformation. 
The first node to be transformed is x2dd. Next x1 is transformed, 
thus f1’s transformation is complete and transformation is ready 
to begin for the second output. In transforming x1 note that the 
algorithm has had to handle a case of uneven levels and to 
account for the "skipped" node before continuing the 
transformation. Next the x2 node of f2 is transformed. Finally, the 
entire circuit is now transformed into an SDD and the Walsh 
spectral coefficients can be read at the terminal nodes.   

4. EXPERIMENTAL RESULTS 
In this section experimental results are presented that have been 
carried out on a SUN Ultra 10. This code is implemented in 

conjunction with the CUDD package [17]. All runtimes are given 
in CPU seconds with a runtime limit set at 1 hour of CPU time. 

 

Each transform was performed on over one hundred benchmark 
circuits. The circuits represented here were selected based upon 
the size of the Walsh SDD, restricting the set to diagrams that 
had over 5000 nodes as large enough to be of interest. Table 1 
contains the number of nodes and the number of coefficients for 
each benchmark circuit for each of the transforms.  

In Table 2, runtimes are shown for the original multi-output 
algorithm and for the improved algorithm utilizing "skipped" 
node caching as well as the percentage of improvement achieved. 
Because CPU time was limited to one hour, the transformation of 
some circuits failed to complete. Approximately 10% of the total 
benchmark circuits attempted could not be completed within this 
time limitation.  

5. CONCLUSION 
An algorithm for computing the spectral coefficients for the 
Walsh, the arithmetic, and the Reed-Muller transforms of a 
multi-output circuit represented as a BDD has been presented. 
The results from the implementation of transformation 
algorithms with regard to the number of nodes and the number of 
coefficients in the resulting SDD are also presented. Additionally 
an improvement to the algorithm that decreases the runtime by 
caching the results obtained when considering "skipped" nodes 
has been implemented and the comparison between the runtimes 
of these two methods has been shown.  

The approach presented makes it practical to compute the spectra 
of large multi-output problems and extends the possibility of 
applying spectral techniques. The approach is readily extended to 
the Haar spectral domain and to transformation among the 
various spectral domains [23]. 
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Figure 1.  BDD Before Transformation 



 

 

 

 

 

 
Table 1 Complexity Comparisons Between Walsh, Arithmetic, and Reed-Muller Spectral Decision Diagrams 

Number Number Walsh Arithmetic Reed-Muller Circuit 
inputs outputs (SDD) nodes coefficients (BMD) nodes coefficients (FDD) nodes 

alu4 14 8 6554 171 4652 39 1266 
apex5 117 88 7341 226 5757 11 2777 
bc0 26 11 21026 2529 5019 11 3000 
chkn 29 7 9772 863 2482 14 761 
cps 24 109 13388 790 3642 15 1708 
duke2 22 29 6601 506 3057 11 1236 
ex1010 10 10 6844 116 4604 50 1520 
ex4 128 28 15112 384 3217 10 1137 
frg2 143 139 6007 398 5209 13 2272 
in2 19 10 6087 256 2822 22 958 
misex3 14 14 24527 386 3176 29 1140 
tial 14 8 7685 171 3739 39 953 
vda 17 39 11302 935 4333 15 2117 
x1 51 35 10809 1406 2332 5 1040 
  

 

Figure 2.  Transformation to a Walsh Spectral Decision Diagram.  



Table 2.  Comparison of Runtimes Between the Original Algorithm and the Improved Algorithm. 

Walsh Arithmetic Reed-Muller 
Circuit original 

   (sec) 
improved 
    (sec) 

%change original 
   (sec) 

improved 
    (sec) 

%change original 
   (sec) 

improved 
    (sec) 

%change 

alu4 0.94 0.83 11.7% 0.80 0.68 15.0% 0.71 0.59 16.9% 
apex5 - 1900.35 - - 1690.51 - - 1561.31 - 
bc0 32.52 15.61 52.0% 28.98 13.54 53.3% 27.26 12.42 54.4% 
chkn 687.25 404.19 41.2% 620.68 366.41 41.0% 578.86 349.07 39.7% 
cps 487.90 264.72 45.7% 441.88 236.28 46.5% 409.60 220.42 46.2% 
duke2 15.18 9.42 37.9% 13.35 8.78 34.2% 12.57 8.04 36.0% 
ex1010 0.20 0.19 5.0% 0.17 0.17 0.0% 0.15 0.14 6.7% 
ex4 3.46 2.72 21.4% 2.93 2.30 21.5% 2.69 2.16 19.7% 
frg2 1270.07 552.20 56.5% 1154.11 498.62 56.8% 1111.28 445.46 59.9% 
in2 18.47 10.88 41.1% 16.76 10.40 37.9% 15.31 9.47 38.1% 
misex3 2.85 2.27 20.4% 2.60 1.94 25.4% 2.36 1.73 26.7% 
tial 1.07 0.92 14.0% 0.96 0.82 14.6% 0.86 0.73 15.1% 
vda 9.21 4.57 15.4% 8.34 4.30 48.4% 7.92 3.90 50.8% 
x1 465.79 274.27 41.1% 434.46 256.90 40.9% 408.72 246.08 39.8% 
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