
Computing Walsh, Arithmetic, and Reed-Muller
Spectral Decision Diagrams Using

Graph Transformations*
Whitney J. Townsend

Electrical and Computer Engineering
Mississippi State University

Mississippi State, MS
wjt1@ece.msstate.edu

Mitchell A. Thornton
Electrical and Computer Engineering

Mississippi State University
Mississippi State, MS

mitch@ece.msstate.edu

Rolf Drechsler

Institute of Computer Science
University of Bremen
Bremen, Germany

drechsle@informatik.uni-bremen.de

D. Michael Miller
Department of Computer Science

University of Victoria
Victoria, BC, Canada
mmiller@csr.uvic.ca

ABSTRACT
Spectral techniques have found many applications in computer-
aided design, including synthesis, verification, and testing.
Decision diagram representations permit spectral coefficients to
be calculated via graph-based algorithms. In this paper,
algorithms are described for transforming multi-output functions
to produce Walsh, arithmetic, and Reed-Muller spectral decision
diagrams and the experimental results of those implementations
are presented.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids – automatic synthesis,
optimization, switching theory, verification.

J.6. [Computer-Aided Engineering]: Computer -aided design.

General Terms
Algorithm, Design, Verification.

Keywords
Data Structures, Decision Diagrams, Discrete Functions, Spectral
Methods.

1. INTRODUCTION
Spectral methods and decision diagrams have been applied to
many areas of digital systems design. These include synthesis [3,

10, 11, 15], function classification [11], partitioning techniques
[24], verification [13, 16, 22], and testing [20]. Spectral
techniques can offer a view of a problem that illuminates
different properties than are readily evident in the functional
domain. Traditionally, the computational costs of spectral
coefficients have been too high for many of these techniques to
see practical application using linear algebra-based methods of
computation or fast transform techniques [11].

Decision diagrams [1, 4] are the state-of-the-art representation
for Boolean functions in Computer-Aided Design (CAD)
applications. It is thus very attractive to consider decision
diagrams when considering alternatives such as spectral
techniques. This paper concentrates on transforming functional
decision diagrams into spectral decision diagrams, a fundamental
step in the application of spectral techniques to any area.

The use of decision diagrams as a compact representation of
discrete functions provides for a variety of ways that spectra may
be computed or represented [6, 7, 8, 14, 18, 19, 21, 23]. The
differences between the transformation operations described here
and previous techniques is that here multi-output functions
represented as shared decision diagrams are transformed
simultaneously with respect to each output in contrast to
processing each output individually and the incorporation of a
caching mechanism during the transformation procedure that
allows for significant decreases in computer runtime.

The description of the implementation of graph-based spectral
transformation algorithms for decision diagrams representing
multi-output circuits is included and experimental results of
these implementations for the Walsh, the arithmetic, and the
Reed-Muller spectra are provided. Additionally an improvement

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GLSVLSI’02, April 18-19, 2002, New York, New York, USA.
Copyright 2002 ACM 1-58113-462-2/02/0004…$5.00.

*This work was supported in part by the National Science Foundation
under grants CCR-0000891 and CCR-0097246.

to the algorithm provided by caching "skipped" nodes during
decision diagram traversals is also implemented and those results
are presented in comparison with the result of the original
algorithms [14, 21].

The organization of this paper is as follows. Section 2 contains
the necessary background information. Section 3 explains the
multi-output algorithm through pseudo-code and then illustrates
it with an example for a small multi-output circuit. Section 4
presents the experimental results including the number of nodes
and coefficients for the resulting spectral decision diagrams and
also the runtimes needed for the transformations. Section 5
provides concluding remarks on the work presented.

2. BACKGROUND
In the method described here, a multi-output circuit represented
as a Binary Decision Diagram (BDD) is transformed into a
Spectral Decision Diagram (SDD). The resulting SDD is
represented as a Multi-Terminal Binary Decision Diagram
(MTBDD) [3] in which each non-terminal node has two outgoing
edges, one edge representing the Boolean value 0 and the other
edge representing the Boolean value 1. No edge
complementation is used within the MTBDD. It is possible to
further reduce the size of the SDD using edge negations as
described in [14]. The terminal nodes of the MTBDD can take on
any integer value allowing for the representation of spectral
coefficient values at the terminal nodes.

Traversing the decision diagram and transforming each Shannon
node encountered with the 2x2 matrix for the desired transform
accomplishes the transformation from the Boolean domain to the
spectral domain. When all nodes have been transformed in this
way the result is the SDD for the circuit with the spectral
coefficients present at the terminal nodes. A recursive Kronecker
product definition [9] is used in the algorithms as follows in
Equation (1).

 G Gn

i

n

= ⊗
=1

1
 (1)

G in Equation (1) is replaced by the appropriate matrix from
those given in Equation (2) depending on the transformation
desired, either the Walsh (W), the arithmetic (A), or the Reed-
Muller (M).

W 1
1 1

1 1
=

+ +
+ −









 A1

1 0

1 1
=

+
− +









 M 1

1 0

1 1
=









 (2)

Recall that the Walsh and the arithmetic transforms are applied
over the integer field, while the Reed-Muller transform is
applied over GF(2).

A noteworthy fact is that SDDs describing the arithmetic
transform of a function are in fact Binary Moment Diagrams
(BMD) [2] and that Reed-Muller SDDs are Functional Decision
Diagrams (FDD) [5, 12] without the presence of complemented
edges. The inverse transforms can also be easily implemented
allowing for techniques to transform directly from BDDs to
FDDs and from BDDs to BMDs and vice versa. It is easy to see
that BMDs result from the application of the arithmetic

transform since examination of the 2x2 matrix in Equation (2)
results in a pseudo-Boolean decomposition of the original
function and likewise, the Reed-Muller transformation is actually
a matrix representation of a positive-Davio decomposition.

The transformation occurs in a depth-first fashion, and no node
can be transformed until all nodes below it have been
transformed. Special consideration must be given to those
portions of the BDD in which a variable is present in both
polarities and thus is not present on the path, a so-called
"skipped" node. The nodes below this "skipped" node must be
transformed as if the "skipped" node was present. It is often the
case that "skipped" nodes occur in BDDs since this results from
the application of the reduction rules. The fewer the number of
skipped nodes in a BDD, the more closely the BDD approaches
an exponentially sized Shannon expansion tree.

3. METHODOLOGY
The following pseudo-code illustrates the implementation of the
graph-based transformation algorithm for multi-output functions.
This is the framework for the technique used for all three
algorithms by including the appropriate terminal manipulations
after the check for terminal nodes in the else and then branches
of the pseudo-code. For each output the pointer to the top node
for that output is passed to a traversal function that controls the
transformation. The pseudo-code for this traversal code is shown
below.

Traverse (f)
 if (f is a terminal node) return
 Low = Traverse (Low(f))
 High = Traverse (High(f))
 LowTemp = TransformLow(Low, High)
 HighTemp = TransformHigh(Low, High)
 return (NewNonterminal(Index(f), HighTemp, LowTemp))

The TransformLow and TransformHigh transformation functions
are identical except for the action taken once the terminal nodes
are reached. For illustration the code for TransformLow that
transforms the else-child is shown below followed by the specific
terminal manipulations in pseudo-code for the terminal branches
of all three transforms. The TransformLow function has four
possible courses of action: 1) if both nodes are terminal nodes it
performs the required manipulation and returns the new terminal
node; 2) if both nodes are non-terminal nodes at the same level, a
new node is formed with children found by transforming the
corresponding children of the two original nodes; 3) if the level
of the else-child is greater than the level of the then-child, a
"skipped" node is present in the else branch and must be
considered; and 4) if the level of the then-child is greater than the
level of the else- child, a "skipped" node is present in the then
branch and must be considered. Detail of the handling of skipped
nodes is given in the following pseudo-code.

TransformLow(g, h)
 if (g and h are terminals)
 return (appropriate new terminal manipulation)
 else if (Level(g) = Level(h))
 return (NewNonterminal(Index(g), TransformLow(Low(g),
 Low(h)), TransformLow(High(g), High(h))))

 else if (Level (g) > Level (h))
 return(NewNonterminal(Index(h), TransformLow(Twice(g),
 Low(h)), High(h)))
 else (Level(g) < Level (h))
 return (NewNonterminal(Index(g), TransformLow(Low(g),
 Twice(h)), High(g)))

For the Walsh transform the appropriate manipulation in the
TransformLow function of the pseudo-code is as follows.

return (NewTerminal(Value(g) + Value(h)))

For the TransformHigh function of the Walsh transform the
pseudo-code is as follows.

return (NewTerminal(Value(g) - Value (h)))

The arithmetic transform TransformLow function terminal
manipulation is described by the following pseudo-code.

return (NewTerminal (Value(g) + 0))

For the TransformHigh function the arithmetic transform pseudo-
code is as follows.

return (NewTerminal (Value(h) - Value(g)))

The TransformLow function for the Reed-Muller transform uses
the same terminal manipulation as the TransformLow function
for the arithmetic transform. The TransformHigh function for the
Reed-Muller transform uses the TransformLow function from the
Walsh transform stated above although the Reed-Muller
transform is applied over GF(2).

"Skipped" nodes within the diagram must be considered, and
their children transformed as if they were present. As this
allowance must be made when transforming both the else-child
and the then-child, an improvement was made to the original
algorithm providing for caching of the result of a "skipped" node
when it is first encountered so that the result is available on the
subsequent encounter. Caching the result of this computation
resulted in significant decreases in the computation time required
for transformation as shown in Section 4.

For illustration of the algorithm, a small multi-output circuit with
two outputs representing an AND gate and an OR gate is shown
as a BDD in Figure 1. As is common in spectral transformation
[11], the function is represented with +1denoting logic 0 and -1
denoting logic 1. In Figure 2, the multi-output circuit with
f1=x1x2 and f2=x1+x2 is shown undergoing Walsh transformation.
The first node to be transformed is x2dd. Next x1 is transformed,
thus f1’s transformation is complete and transformation is ready
to begin for the second output. In transforming x1 note that the
algorithm has had to handle a case of uneven levels and to
account for the "skipped" node before continuing the
transformation. Next the x2 node of f2 is transformed. Finally, the
entire circuit is now transformed into an SDD and the Walsh
spectral coefficients can be read at the terminal nodes.

4. EXPERIMENTAL RESULTS
In this section experimental results are presented that have been
carried out on a SUN Ultra 10. This code is implemented in

conjunction with the CUDD package [17]. All runtimes are given
in CPU seconds with a runtime limit set at 1 hour of CPU time.

Each transform was performed on over one hundred benchmark
circuits. The circuits represented here were selected based upon
the size of the Walsh SDD, restricting the set to diagrams that
had over 5000 nodes as large enough to be of interest. Table 1
contains the number of nodes and the number of coefficients for
each benchmark circuit for each of the transforms.

In Table 2, runtimes are shown for the original multi-output
algorithm and for the improved algorithm utilizing "skipped"
node caching as well as the percentage of improvement achieved.
Because CPU time was limited to one hour, the transformation of
some circuits failed to complete. Approximately 10% of the total
benchmark circuits attempted could not be completed within this
time limitation.

5. CONCLUSION
An algorithm for computing the spectral coefficients for the
Walsh, the arithmetic, and the Reed-Muller transforms of a
multi-output circuit represented as a BDD has been presented.
The results from the implementation of transformation
algorithms with regard to the number of nodes and the number of
coefficients in the resulting SDD are also presented. Additionally
an improvement to the algorithm that decreases the runtime by
caching the results obtained when considering "skipped" nodes
has been implemented and the comparison between the runtimes
of these two methods has been shown.

The approach presented makes it practical to compute the spectra
of large multi-output problems and extends the possibility of
applying spectral techniques. The approach is readily extended to
the Haar spectral domain and to transformation among the
various spectral domains [23].

6. ACKNOWLEDGMENT
The authors would like to thank Dr. Alan Mishchenko for his
advice in implementing these algorithms using the CUDD
package.

Figure 1. BDD Before Transformation

Table 1 Complexity Comparisons Between Walsh, Arithmetic, and Reed-Muller Spectral Decision Diagrams

Number Number Walsh Arithmetic Reed-Muller Circuit
inputs outputs (SDD) nodes coefficients (BMD) nodes coefficients (FDD) nodes

alu4 14 8 6554 171 4652 39 1266
apex5 117 88 7341 226 5757 11 2777
bc0 26 11 21026 2529 5019 11 3000
chkn 29 7 9772 863 2482 14 761
cps 24 109 13388 790 3642 15 1708
duke2 22 29 6601 506 3057 11 1236
ex1010 10 10 6844 116 4604 50 1520
ex4 128 28 15112 384 3217 10 1137
frg2 143 139 6007 398 5209 13 2272
in2 19 10 6087 256 2822 22 958
misex3 14 14 24527 386 3176 29 1140
tial 14 8 7685 171 3739 39 953
vda 17 39 11302 935 4333 15 2117
x1 51 35 10809 1406 2332 5 1040

Figure 2. Transformation to a Walsh Spectral Decision Diagram.

Table 2. Comparison of Runtimes Between the Original Algorithm and the Improved Algorithm.

Walsh Arithmetic Reed-Muller
Circuit original

 (sec)
improved
 (sec)

%change original
 (sec)

improved
 (sec)

%change original
 (sec)

improved
 (sec)

%change

alu4 0.94 0.83 11.7% 0.80 0.68 15.0% 0.71 0.59 16.9%
apex5 - 1900.35 - - 1690.51 - - 1561.31 -
bc0 32.52 15.61 52.0% 28.98 13.54 53.3% 27.26 12.42 54.4%
chkn 687.25 404.19 41.2% 620.68 366.41 41.0% 578.86 349.07 39.7%
cps 487.90 264.72 45.7% 441.88 236.28 46.5% 409.60 220.42 46.2%
duke2 15.18 9.42 37.9% 13.35 8.78 34.2% 12.57 8.04 36.0%
ex1010 0.20 0.19 5.0% 0.17 0.17 0.0% 0.15 0.14 6.7%
ex4 3.46 2.72 21.4% 2.93 2.30 21.5% 2.69 2.16 19.7%
frg2 1270.07 552.20 56.5% 1154.11 498.62 56.8% 1111.28 445.46 59.9%
in2 18.47 10.88 41.1% 16.76 10.40 37.9% 15.31 9.47 38.1%
misex3 2.85 2.27 20.4% 2.60 1.94 25.4% 2.36 1.73 26.7%
tial 1.07 0.92 14.0% 0.96 0.82 14.6% 0.86 0.73 15.1%
vda 9.21 4.57 15.4% 8.34 4.30 48.4% 7.92 3.90 50.8%
x1 465.79 274.27 41.1% 434.46 256.90 40.9% 408.72 246.08 39.8%

7. REFERENCES
[1] Bryant, R. E. Graph-based algorithms for Boolean function

manipulation. IEEE Trans. on Comp. 35, 8, (August 1986),
677-691.

[2] Bryant, R. E. and Chen, Y.-A. Verification of arithmetic
functions with binary moment diagrams. in Design
Automation Conf. (San Francisco CA, June 1995), 535-541.

[3] Clarke, E. M., McMillan, K. L., Zhao, X., Fujita, M., and
Yang, J. Spectral transforms for large Boolean functions
with application to technology mapping. in Design
Automation Conf. (Dallas TX, June 1993), 54-60.

[4] Drechsler, R. and Becker, B. Binary Decision Diagrams -
Theory and Implementation. Kluwer Academic Publishers.
1998.

[5] Drechsler, R., Sarabi, A., Theobald, M., Becker, B., and
Perkowski, M. A. Efficient representation and manipulation
of switching functions based on ordered Kronecker
functional decision diagrams. in Design Automation Conf.
(San Diego CA, June 1994), 415-419.

[6] Falkowski, B. Forward and inverse transforms between
Haar wavelet and arithmetic functions. Electronic Letters.
34, 10, (May 13, 1998), 1084-1085.

[7] Falkowski, B. Relationship between arithmetic and Haar
wavelet transforms in the form of layered Kronecker
matrices. Electronic Letters. 35, 11, (May 28, 1999), 799-
800.

[8] Falkowski, B. and Chang, C.-H. Forward and inverse
transformations between Haar spectra and ordered binary

decision diagrams of Boolean functions. IEEE Trans. on
Comp. 46, 11, (November 1997), 1272-1279.

[9] Graham, A. Kronecker Products and Matrix Calculus: with
Applications. Ellis Horwood Limited and John Wiley &
Sons. 1981.

[10] Hansen, J. P. and Sekine, M. Synthesis by spectral
translation using Boolean decision diagrams. in Design
Automation Conf. (Las Vegas NV, June 1996), 248-253.

[11] Hurst, S. L., Miller, D. M., and Muzio, J. C. Spectral
Techniques in Digital Logic. Academic Press Publishers.
1985.

[12] Kebschull, U., Schubert, E., and Rosenstiel, W. Multilevel
logic synthesis based on functional decision diagrams. in
European Conf. on Design Automation. (Brussels Belgium,
March 1992), 43-47.

[13] Kunz, W. and Pradhan, D. K. Recursive learning: a new
implication technique for efficient solutions of cad
problems: test, verification and optimization. IEEE Trans.
on CAD. 13, 9, (September 1994), 1143-1158.

[14] Miller, D. M. Graph algorithms for the manipulation of
Boolean functions and their spectra. in Congressus
Numerantium, (1987), 177-199.

[15] Perkowski, M. A., Driscoll, M., Liu, J., Smith, D., Brown,
J., Yang, L., Shamsapour, A., Helliwell, M., and Falkowski,
B. Integration of logic synthesis and high-level synthesis
into the diades design automation system. in Int’l. Symp.
Circuits and Systems. (Portland OR, May 1989), 718-751.

[16] Radecka, K. and Zilic, Z. Relating arithmetic and Walsh
spectra for verification by implicit error modeling. in Int’l.
Workshop on Applications of the Reed-Muller Expansion in

Circuit Design. (Mississippi State MS, August 2001), 205-
214.

[17] Somenzi, F. CUDD: CU Decision Diagram Package Release
2.3.0.
http://www.vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html.

[18] 6WDQNRYLü��5��6��$�QRWH�RQ�WKH�UHODWLRQ�EHWZHHQ�5HHG-
Muller and Walsh transforms. IEEE Trans. on EMC. 24, 2,
(February 1982), 68-70.

[19] 6WDQNRYLü�5��6���6DVDR��7���DQG�0RUDJD��&��6SHFWUDO�
transforms decision diagrams. in Sasao, T. and Fujita, M.
(eds.), Representation of Discrete Functions. Kluwer
Academic Publishers. 1996.

[20] Susskind, A. K. Testing by verifying Walsh coefficients.
IEEE Trans. on Comp. 32, 2, (February 1983), 198-201.

[21] Thornton, M. A. and Drechsler, R. Spectral decision
diagrams using graph transformations. in Design
Automation and Test in Europe. (Munich Germany, March
2001), 713-717.

[22] Thornton, M. $���'UHFKVOHU��5���DQG�* QWKHU��:��$�PHWKRG�
for approximate equivalence checking. in Int’l Symposium
on Multi-Valued Logic. (Portland OR, May 2000), 447-452.

[23] Thornton, M. A., Drechsler, R., and Miller, D. M. Spectral
Techniques in VLSI CAD. Kluwer Academic Publishers.
2001.

[24] Varma, D. and Trachtenberg, E. A. Design automation tools
for efficient implementation of logic functions by
decomposition. IEEE Trans. on CAD. 8, 8, (August 1989),
901-916.

