Efficient Design-Flow for Counting Heads

Sebastian Kinder

Rolf Drechsler

Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
{kinder,drechsle} @informatik.uni-bremen.de

I. INTRODUCTION

Nowadays railway systems are designed and tested in
a conventional way, i.e. the systems are simulated with a
manually created test bench. This has the advantage that the
designers have a considerable expertise with this kind of
work, but there is still a lot of potential for human failure.
Furthermore, testing is very cost-intensive and can never reach
complete coverage. Hence, an integrated design flow for rail-
way systems is needed, which allows for efficient modeling,
validation, simulation-based verification as well as formal
verification. A well accepted approach for this is the system
level description language SystemC, which is known from the
hardware design domain. SystemC supports the designer with
a suitable methodology for efficient modeling and validation.
With an integrated simulation kernel it facilitates a fast and
efficient simulation-based validation and verification.

In this paper we present a design flow for a railway specific
application based on SystemC. We show the modeling of
Counting Heads (CHs) [7] for railways, which are used
to determine whether a specified Track Vacancy Detection
Section (TVDS) is clear or occupied. Especially for electronic
railway interlocking systems as constructed by SIEMENS,
which determine automatically, whether a TVDS is clear or
occupied, the correct function of CHs is crucial: If they fail
to work properly a TVDS would either be falsely indicated
as occupied — resulting in a deterioration of availability and
reliability — or falsely indicated as clear — possibly introducing
a safety hazard. The proof of correctness helps to avoid such
situations. Therefore, we present first steps towards a complete
formal verification of CHs using Bounded Model Checking
(BMO).

IT. PRELIMINARIES
A. Specification Languages

To specify the model the system description language
SystemC [6] is used. A SystemC-model, which is modeled
on the register transfer level (RTL), can be verified by using
Property Checking. These properties can be specified using
temporal expressions. A widely known industrial standard is
PSL [1] from Accellera.

PSL-properties as they are used here consist of two parts:
a list of assumptions and a list of commitments. They state
that if all assumptions hold, all commitments have to hold as
well. Otherwise the property would fail. Properties argue over
a finite time interval, which is called observation window. In
PSL there are multiple operators to allow for expressing time
constraints and logical or arithmetic constraints.

B. Bounded Model Checking

In model checking properties for a given system are formu-
lated in a dedicated “verification language”. It is then formally
proven whether these properties hold under all input and
state assignments for the given assumptions. While “classical”
CTL-based model checking [3] can only be applied to medium
sized designs, approaches based on Bounded Model Checking
(BMC) as discussed in [2] give very good results when
used for complete blocks. In BMC the properties are only
considered over a finite time interval. BMC has originally
been proposed for circuit verification and in this context con-
sidering a finite number of steps is reasonable. The underlying
techniques are outlined below.

The general structure of the resulting BMC instance for a
property p over the finite interval [0, ¢] is given by

c—1

/\ T5(8i,8i41) A D,
i=0

system?_affect

/gvaluate
12 ms

s_both_systems
/evaluate
L1s

0.

was_unaffected

[++1 [++

system1 | ieuz/\

was_both_systems

Jevaluate
01s

Fig. 1. FSM of the Counting Head [7]

where Tj(s;, s;+1) denotes the transition relation between
cycles ¢ and ¢ + 1. If this formula is satisfiable a counter
example has been found, disproving the validity of p. This
problem can be formulated as a SAT problem by unrolling the
circuit for c time frames and generating logic for the property.
Since there is no restriction to reachable states during the
proof of the corresponding SAT instance a counter-example
may start from an unreachable state. Usually, if such a case
occurs these states are excluded by additional assumptions.
Finally, if the SAT instance is unsatisfiable the property holds.

III. MODELING THE COUNTING HEADS

Counting Heads (CHs) [7] are needed to determine whether
a railway track section is vacant or occupied. This is essential
for electronic railway interlocking systems in order to position
points into the correct direction for the next train. CHs are
used in a lot of interlocking systems all over the world. A
CH failing to work properly could result in a collision of
railways and endanger the life of passengers.

A CH has three Boolean inputs. One of these inputs is a
reset, which sets all internal variables and all outputs to 0.
The other two Boolean inputs are retrieved from a Double
Wheel Detector (DWD), which is mounted on one of the
rails and detects the passing and the direction of this passing
of wheels of a vehicle. The CH itself is implemented as a
finite state machine (FSM) (see Figure 1), consisting of four
states. Two of these states consist of 2 substates. This FSM
is traversed corresponding to the impacts on the sensor of the
DWD. Either the first sensor, both sensors, the second sensor
or none of the sensors are affected. For each state transition
several integer counters are manipulated. The system can be
idle in each of the states/substates for a specific time, before
the internal counters are evaluated. When the counters are
evaluated, the output values are written. The timeouts vary
from a few milliseconds up to one second. Furthermore, the
system detects failures at the time of evaluation and indicates
them by the corresponding outputs. Depending on the type,
CHs can have different outputs, but there are four outputs for
all types:

1) The number of axles is the signed sum of all axles which
crossed the double wheel detector. The sign indicates
the direction of the axles.

2) The number of errors is incremented every time an error
occurred in the CH, e.g. an undefined counting impulse.

3) The time the CH was not affected, states for how long
no axle crossed the double wheel detector.

4) The counter control token is set, if the CH raises
suspicions of malfunctions.

Additionally, there can be several failure tokens, which indi-
cate if a failure occurred, depending on the type of the CH.

41, (4] |
-+

unaffected

/evaluate
1s

IV. SIMULATION-BASED VALIDATION

In this section we show the simulation-based validation of
the SystemC model of the CH. Since SystemC is a C++

<ls <0.1s
[—

Systeml [[1 [1 [1_
System2 | 1 1 | L [L

[)
<12ms <12ms

Fig. 2. Stimuli Waveform

sor Signal Value ﬂelpl
14 10 24 29 34 30 44 40 ©4 59 €4 £0 T4 79 G4 89 94 09 104100114110 1108 1119 1120

L e e el ey e B
-

-
L]

Es

RCOCHRHKRONRO0N
§ § =7
(a) Part 1 (b) Part 2

Fig. 3. Waveform of a Simulation with a Tolerated Number of Interferences

class library, the modelled system can be compiled to an
executable specification. This specification can be simulated
with the integrated SystemC simulation kernel. To simulate a
design it is necessary to stimulate its inputs. This is done by
a special module, the stimuli generator, which is connected to
all inputs of the SystemC model. The generator has exactly
the same number of outputs as the design’s number of inputs.
These outputs have to be of the same type as the inputs of the
system. For the CH-model introduced in Section III a stimuli
generator with three Boolean outputs is needed to stimulate
each one of the inputs systeml, system2 and reset.

In Figure 2 the stimuli for the inputs is given. The delay
between two rising and falling edges respectively on the two
sensor systems of the DWD is not allowed to be greater than
12 ms. No high edge may last 0.1 s or longer. Both sensor
systems may not be unaffected for 1 s or more at the same
time. If any of these happens, the train is considered standing
and thus, the evaluation phase of the CH begins.

The stimuli from Figure 2 are produced by a stimuli
generator. This waveform can be found again in the resulting
waveform of the test run in Figure 3(a). The first two axles
crossed the detector in a regular way, i.e. sensor system 2 is
affected first, then both systems are affected, afterwards sensor
system 1 is affected and finally no sensor system is affected.
But for the last three axles the FSM is traversed from state
unaffected to state both_systems_affected via ei-
ther state system2 affected or systeml affected
and on the same way back (compare to Figure 2). Thus, the
internal counters are incremented in an irregular way, because
state transitions contrary to the main transition direction
occurred. Whether the number of false transitions is within the
range of tolerance, is calculated by the equation: 1+a/rl;qz,
where 7,4, > 1 is a parameter, which is defined for every
CH type. In the case at hand rl,,,, equals to one and the
maximum number of state transitions contrary to the main
direction is 6 and a = 5. Therefore, a counter value 6 is valid
and the five axles are counted correctly as can be seen in
Figure 3(b).

If the number of transitions contrary to the main direction
would be higher, the corresponding counter would exceed the
limit 1 4+ a%rlmaz. This is indicated by setting the counter
control token (countctrl in Figure 3(a)).

With such test cases the robustness of the counting proce-
dure against interferences and failures can be shown. Addi-
tionally, specific scenarios can be simulated to check whether
the whole system switches into a safe state if too many
interferences occur.

V. FORMAL VERIFICATION

The SystemC model described in Section III is implemented
in synthesizeable SystemC. Hence, the design can be synthe-
sized with a frontend, e.g. [5]. The acquired FSM representa-
tion of the SystemC design and a specified PSL-property are
taken as inputs for a SystemC property checker [4].

In this section we present the formal verification of an
aspect of CHs, which is very important for the system
to avoid safety hazards. There are several mechanisms to
manage failures. One of them is the counter control token
(countctrl). If the countctrl is set, the corresponding
TVDS is indicated as occupied. There are two different classes
of failures, which have to be considered for setting of the
countctrl:

1) Erroneous impacts on a single sensor system (including
a breakdown of a single sensor system).

2) Erroneous impacts on both sensor systems without axle
counting.

The necessary evaluation for these failure classes is carried
out in two steps. Firstly, the counters for the two failure
classes are calculated. Secondly, the counters are compared to
predefined constants. For the impact on a single sensor system
the constant is called s_max and for the impact on both
sensor system it is called c_.max. For the erroneous impacts
on the sensor systems there are also counters, called s and
c for a single axle and ss and cc for a group of axles. The
countctrl is set, if (ss > somax) V (cc > comax). This
is formulated in a PSL-property and has to hold, universally.
This property is verified in 2.7 seconds on a computer with
1GB main memory and an AMD Athlon 64 3500+ CPU
running under Linux. But at this point of the verification we
still have to prove that the variables ss and cc have always
the correct values, which is performed in the verification steps
to follow.

a) Erroneous Impacts on single Sensor Systems In this
paragraph the correct value of counter ss is proven. Every
time the state unaffected is reached, the counters for a
single axle are added to the counters for a group of axles.
Before the counters for a single axle are set to zero, an
additional counter is calculated and added to the counter ss.
To prove the correctness of the latter counter, two steps are
needed:

1) The correct implementation of s as a function of the
state transitions performed during the counting process
has to be verified.

2) The correct implementation of ss as a function of the
sequence of s values has to be verified.

The first part is an inductive proof. It takes 7.2 seconds to
prove the initial and the induction step. The second part has
to hold under any assumption. This means that no inductive
reasoning is necessary to prove that the value of ss always
is the sum of the previous value of ss and the currently
calculated value of s. Thus, we can conclude, that during
the evaluation phase ss is the sum of all s. The proof takes
14.0 seconds.

b) Erroneous Impacts on both Sensor Systems The
proof of the correct value of cc is analogue to the proof for
ss. The counter cc is the sum of all c. And c is calculated
at the same time as s with a different equation. Like s, c is
proven inductively in 6.6 seconds. That cc is the sum of all
previous c, is proven 3.2 seconds.

Altogether, the verification of the counter controller
countctrl and its invariants took 33.7 seconds.

VI. CONCLUSIONS AND FUTURE WORK

A design flow oriented at efficient modeling and verification
of CHs was presented. This design flow is based on SystemC.

The future work consists of the complete formal verification
of CHs using bounded model checking and inductive reason-
ing. We already gave a proof of concept by proving the correct
behaviour of the model for the failure class counter control
in the preceding section. Another part in future work will be
proving completeness of the verification.

REFERENCES

[1] Accellera. Property Specification Language Version 1.1, 2004.

[2] A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, and Y. Zhu. Symbolic
model checking using SAT procedures instead of BDDs. In Design
Automation Conf., pages 317-320, 1999.

[3] J.R. Burch, EM. CIElrl%e, K.L. McMillan, and D.L. Dill. Sequential circuit

verification using symbolic model checking. In Design Automation Conf.,

Eages 46-51, 1990.

. Drechsler and D. Grofle. System level validation using formal tech-
niques. IEE Proceedings Computer & Digital Techniques, Special Issue
on Embedded Microelectronic Systems: Status and Trends, 152(3):393—
406, May 2005.

[5] G. Fey, D. GroBe, T. Cassens, C. Genz, T. Warode, and R. Drechsler.
ParSyC: An Efficient SystemC Parser. In Workshop on Synthesis And
System Integration of Mixed Information technologies (SASIMI), pages
148-154, 28704.

[6] T. Grotker, S. Liao, G. Martin, and S. Swan.
SystemC. Kluwer Academic Publishers, 2002.

[7] Siemens AG. Az S M Multiple-section Axle Counting System. Copy-
right, Siemens AG, September 2003.

(4]

System Design with

