

Gatecomp: Equivalence Checking of Digital Circuits in
an Industrial Environment

Rolf Drechsler
Institute of Computer Science

University of Bremen
28359 Bremen/Germany

drechsle@informatik.uni-bremen.de

Stefan Höreth
CL DAT DF LD V

Infineon Technologies AG
81739 München/Germany

Stefan.Hoereth@infineon.com

Abstract

This paper outlines formal verification in general and then introduces CVE’s equivalence checking tool

gatecomp, an equivalence checker developed in the formal verification group at Infineon, Germany. The
basic verification tasks are described and the advanced features of the tool are discussed. The

application of gatecomp to large industrial examples is reported. This demonstrates the power of the

tool for various verification tasks, like netlist vs netlist comparison, RTL vs. netlist comparison or RTL
vs. RTL comparison.

Keywords: formal hardware verification, equivalence checking, multi -engine concept.

Why use Formal Verification?
The traditional practice of functional verification by simulation reaches its limits and threatens
to block exploitation of deep submicron opportunities in applications. Therefore technological
alternatives to simulation have a brilliant future. Formal verification, i.e. the highly automated,
mathematical analysis of logical levels of circuit design, is one of the few such alternatives. It
brings to the user previously unimaginable quality, cost and time improvements for tasks
constituting over 60% of the overall development efforts. Moreover, the approach allows
verification to be concurrent with design, while simulation is often applied after first integration
(see also [Kro99,Dre00,Pay01]).

Where to use Formal Verification?
Formal verification can be applied in nearly every stage of the design flow, as illustrated by
Figure 1.

Equivalence
Checking

Equivalence
Checking

Model
Checking

Initial Design Re-design Synthesis Test & Layout

Formal
 Linting

Early Code

Prop.

RT
RT RT

Equivalence
Checking

List

Figure 1 – Formal Verification Flow

This can start from static and dynamic checks of early RT code. Well before tests or formal
properties of the code are available these checks quickly and easily improve the quality of
block design and thus reduce the repair portion of subsequent verification. Then a property
checker will test the RTL against system requirements (properties) providing a complete and
detailed 100% analysis of blocks. Finally an equivalence checker will ensure that the design
doesn’t change as it is implemented and integrated. All of these tools as well as adaptations
for specific usergroups (IP business, ASIC foundries) are available in the CVE toolset.

Equivalence Checking

Most designers will first experience formal
verification when using an equivalence
checking tool for sign-off e.g. to check that
the final netlist has the same behavior as
previous netlists and even the original
RTL.

As an example, the general flow for the
synthesis verification, i.e. checking the
equivalence of a RTL description and a
netlist, is shown in Figure 2. Starting from
the RTL description a netlist is generated
by a synthesis tool. Then both
descriptions are translated into an internal
gate format that is used by gatecomp to
prove functional equivalence. The
translation is done by the CVE frontends.
This independence from the synthesis tool
guarantees a further improvement of
quality of the overall design.

In a similar way equivalence of RTL vs.
RTL and netlist vs. netlist descriptions is
proven.

The steps in general are as follows:

1. The designs are translated into an
internal format.

2. The correspondence between the
designs is established in a matching
phase.

3. Equivalence or inequivalence is
proven by the equivalence checker.

4. In case of an inequivalence a
counterexample is generated and the
design has to be debugged.

Figure 2: Synthesis verification flow

Several powerful features of gatecomp support the user during these steps.

RRTTLL::
VVeerriilloogg,, VVHHDDLL

nneettlliisstt

ggaattee ggaattee

ssyynntthheessiiss

ttooooll

Advanced Equivalence Checking in CVE
The CVE toolset contains the advanced equivalence checker gatecomp. The algorithms used
are incredibly efficient; a typical performance figure for gatecomp is 100 k gates per minute;
many multi-million gate designs have been verified so far. Before describing the examples in
more detail, we first review the main features of the tool and also show the differences due to
more precise modeling compared to alternative implementations.

Gatecomp is used to compare netlist vs. netlist, RTL vs. netlist or RTL vs. RTL. While other
tools only focus on bug finding, in addition gatecomp is targeted towards simulation
verification, i.e. to check that what is simulated on the RTL is also simulated on the netlist
(reference design).

Gatecomp is an advanced equivalence checker due to the following differentiators:

§ Speed
ú An efficient hash based data structure allows to handle complete designs by

very low memory consumption (see also [KK97,vEi97]).
ú Multi-engines with multi-threading guarantee beside the very fast execution

also the robustness and quality (see also [PK00,GPB00]).
ú The denotational translation schemes on word level in language frontends

support the use of RTL information for the equivalence proof (see also
[Joh01]).

§ Capacity
ú The intelligent control of multi-engines ensures a tight integration of the

different proof engines.
ú The frontends make use of compositional translation.

§ Language coverage
ú The longterm experience with various description formats, like VHDL (incl.

VITAL), Verilog (incl. UDPs) and EDIF, results in robust frontends and very
user friendly linting tools.

§ Debugging
ú A Graphical User Interface (GUI) allows for easy handling of the gatecomp

results (see Figure 3).
ú A link to ModelSim and Debussy for source code/netlist debugging is provided.
ú A fast reachability analysis for eliminating spurious sequences is integrated.

§ Flexibility
ú The multi-engine concept can easily be extended.
ú Gatecomp supports full Boolean constraints.
ú A 3rd party transistor extraction tool can be accessed.
ú Automatical generation of controllability and observability don’t cares.

§ Rich set of features
ú Multipliers of large bit-length can be handled.
ú Matching techniques: name based, simulation and prover based, structural,

user defined, change name file from Synopsys.
ú Automatic removal of redundant states.
ú Support for clock-gating, tri-states, black boxing, compression of

counterexamples, assertions and constraints, scan path insertion, ...

Figure 3: Graphical user interface

Precision - what you simulate on RTL is also simulated on the netlist

Gatecomp uses a different approach for the proof algorithms. Instead of a two- a four-valued
logic is used, that allows to use synthesis and simulation semantics. While other tools reduce
the simulation to two values only, gatecomp can model the precise language semantics, e.g.
9-valued in VHDL. The main features are:

ú A formal library qualification tool in CVE guarantees conformance of synthesis
and simulation view and issues warnings otherwise. The libraries are compiled
into simple functional replacements. This - in addition to being very robust and
reliable - results in very fast runtimes during the equivalence checking phase.

ú The simulation/synthesis mismatches are proven/highlighted.
ú Gatecomp is independent of the internal workings of the synthesis tools.
ú The tool allows a formal handling of internal don’t cares for RTL/RTL and

RTL/netlist comparison.

Examples

To demonstrate the usage of the tool in equivalence checking of ASICs we report on three
verification scenarios: a netlist vs. netlist comparison, a RTL vs. netlist comparison, and a
RTL vs. RTL comparison.

Netlist vs. netlist comparison

First, we describe the verification of a synthesized netlist against its description after test logic
insertion. The verified designs contained approximately 2.6 million gates. Details are given in
Table 1.

The verification times were less than 20 CPU minutes on a four processor machine. Less
than 0.5 GByte of main memory were used.

characteristics synthesized netlist final netlist

inputs 2843 2843

outputs 4178 4178

states 150218 150215

gates (million) 2.635 2.634

lines of code 222610 3861939

Table 1: Information on ASIC complexity

RTL vs. netlist comparison

This is the typical scenario for synthesis verification as shown in Figure 2. In our example the
RTL description had more than 50.000 lines of code and the resulting netlist consists of over
2 million gates. Gatecomp took less than 23 CPU minutes and less than 420 MByte of main
memory to prove functional correctness.

RTL vs. RTL comparison

A Verilog design was automatically translated into a VHDL description. After translation each
module was checked by equivalence checking for functional correctness. For almost all
blocks the verification was done in no time and fully automatic. In only a few cases – where
the Verilog-VHDL-translation was erroneous – the tool took a few CPU minutes.

In case of a block with more than 600 outputs and over 1000 state variables the verification
took 7 CPU minutes and less than 80 MByte were used. Based on the counterexample
generated by gatecomp the design bug, that was due to a wrong assignment of don’t care
values, could easily be fixed.

In all three cases, this high performance is to be seen as a result of tight interaction between
different tool components, i.e. the frontends, the proof engine and the debugging
environment. The multi-engine concept used in gatecomp and its intelligent control
guarantees high flexibility and robustness also on large designs with several million gates.

Comparison

Finally, we report about a comparison of various equivalence checking tools carried out by
one of our customers. All experiments were carried out on a SUN Sparc 2 with 256 Mbyte
running SunOS 5.7. An initial netlist is compared to a post layout netlist including routing that
has been obtained by application of Magma Blast FusionTM, one of the leading physical
design systems that also applies logic synthesis techniques. By this, the comparison often
becomes more difficult. The initial netlist consists of 370 k gate equivalents. The netlist has
more than 4500 outputs and more than 21000 states bits

The runtimes of gatecomp in comparison to three other commercially available tools1 are
given in Table 2. All tools are started with their default settings, i.e. no tuning of the
parameters is done. As can be seen, significant reductions in runtime can be obtained.

1 Names not given to guarantee anonymity.

characteristics tool 1 tool 2 tool 3 gatecomp

runtime >1 week2 ~21h ~18h ~3.5h

Table 2: Information runtime

Conclusion

CVE is being developed at the design automation department of Infineon. The tools have
been in productive use for years in the design centers of Siemens telecom and industrial
automation divisions and in Infineon’s semicustom design flow.

The examples described above show the application to real-world examples. Using the
powerful tool gatecomp, equivalence checking of multi-million gate designs can be performed
within minutes, and by this is superior to classical simulation - not only with respect to quality
- but also regarding runtime. This has a direct impact on the costs of the verification process
that can be reduced significantly based on formal techniques.
A comparison to other equivalence checking tools on a difficult example has shown a
significant speed-up demonstrating the power of the tool.

References

[Pay01] Payer, M.: Industrial Experience with Formal Verification, it+ti, Oldenbourg
Wissenschaftsverlag, Volume 43, Issue 1, pages 16-21, 2001

[KK97] Kuehlmann, A. and Krohm, F.: Equivalence checking using cuts and heaps,
ACM/IEEE Design Automation Conference, pages 263-268, 1997

[vEi97] van Eijk, C.: Formal Methods for the verification of digital circuits, PhD thesis,
Eindhoven University of Technology, 1997

[Kro99] Kropf, T.: Introduction to Formal Hardware Verification, Springer, 1999

[Dre00] Drechsler, R.: Formal Verification of Circuits, Kluwer Academic Publisher, 2000

[GPB00] Goldberg, E., Prasad, M. and Brayton, R.: Using SAT for combinational equivalence
checking, International Workshop on Logic Synthesis, pages 185-191, 2000

[PK00] Paruthi, V. and Kuehlmann, A.: Equivalence checking combining a structural SAT-
solver, BDDs and Simulation, International Conference on Computer Design, pages 459-464,
2000
[Joh01] P. Johannsen: BooStER: Speeding up RTL property checking of digital designs by
word-level abstraction, CAV’01, 2001

Trademarks used herein are the property of the respective owners.

2 After a finetuning of the parameters for this tool a reduction of runtime to 4 hours has been
achieved. But similar results can be expected for the other tools by variation of the
parameters, e.g. gatecomp can do the comparison in less than 1 hour, if specialized
parameters are chosen.

