
BDD-BASED VERIFICATION OF SCALABLE DESIGNS

Daniel Große and Rolf Drechsler
Institute of Computer Science

University of Bremen
28359 Bremen, Germany

{grosse,drechsle}@informatik.uni-bremen.de

Abstract

Many formal verification techniques make use of
Binary Decision Diagrams (BDDs). In most applications
the choice of the variable ordering is crucial for the
performance of the verification algorithm. Usually BDDs
operate on the Boolean level, i.e. BDDs are a bit-level data
structure.

In this paper we present a method to speed-up BDD-
based verification of scalable designs that makes use of a
learning process for word-level information. In a pre-
processing a scalable ordering is extracted from the RTL
that is used as a static ordering for large designs.
Experimental results show that significant improvements
can be achieved.

Introduction

As modern circuits contain up to several million

transistors, verification has become the major bottleneck in
the design flow, i.e. up to 80% of the overall design costs
are due to verification. This is one of the reasons why
recently several formal verification methods have been
developed since classical simulation cannot guarantee
sufficient coverage of the design. E.g. in [1] it has been
reported that for the verification of the Pentium IV more
than 200 billion cycles have been simulated, but this only
corresponds to 2 CPU minutes, if the chip is run at 1 GHz.

As alternatives, formal verification or symbolic
simulation have been proposed and in the meantime these
have been successfully applied in many projects [5]. In this
context many alternative techniques have been proposed
that are used to speed up the proof process, such as SAT or
BDDs. A lot of work has been done to combine these
techniques resulting in very efficient solvers (see e.g. [7]).
Even though these techniques are very powerful they all
operate on the Boolean level, i.e. high-level information
that is available on the initial RTL description is not used.
This also applies in cases where very regular structures are
verified, such as adders, multipliers or scalable designs.
Many difficulties in the proof process result from the fact
that this information is not used. In contrast, the frontends
that read in the RTL – typically given as Verilog or VHDL
– transform the design to a flat netlist that only consists of
AND-gates and inverters. This has shown several
advantages for verification tools, but all structural
information gets lost.

The major problem when using BDDs in the
verification process is that a good variable ordering has to
be determined. But this is an NP-complete problem and
thus heuristics have to be applied. The most promising
approaches regarding quality of the BDD are based on
dynamic reordering of variables, like sifting [10]. Even
though the resulting BDDs are small in size, the run times
are prohibitive large, such that sifting is usually switched
off during BDD construction. Alternatively, static variable
ordering methods have been proposed that compute a BDD
from the circuit topology (see e.g. [6]). But these
approaches often fail to determine good results. All
techniques proposed so far do not make use of high-level
information or consider the scalability of the design.

In this paper we present a new technique to speed up
BDD-based formal verification of scalable designs. In a
first step a small instance of the Device Under Verification
(DUV) is generated and the corresponding BDD is build.
This BDD is optimized based on dynamic variable
reordering. Since the instance is small, this process runs
very fast. Then the resulting optimized variable ordering is
analyzed using a pattern matching approach. After this
phase the ordering is scaled based on word-level
information extracted from the signal names. This scaled
ordering is then used as a static ordering for larger
instances.

Experimental results for verification of combinational
and sequential circuits showed significant reductions, i.e.
instances that took several hours before could be verified
within a few seconds.

The paper is structured as follows: First we introduce
basic definitions. Then we give the main idea of the
approach. In the following section our approach is
discussed in detail. Next the experimental results are
presented. Finally, the work is summarized.

Preliminaries

As is well-known a Boolean function BBf n →: can

be represented by a Binary Decision Diagram (BDD) which
is a directed acyclic graph where a Shannon decomposition

10 == +=
ii xixi fxfxf (ni ≤≤1)

is carried out in each node. A BDD is called ordered if each
variable is encountered at most once on each path from the
root to a terminal node and if the variables are encountered

in the same order on all such paths. A BDD is called
reduced if it does not contain isomorphic sub-graphs nor
does it have redundant nodes. Reduced and ordered BDDs
are a canonical representation since for each Boolean
function the BDD is uniquely specified [2]. In the
following, we refer to reduced and ordered BDDs for
brevity as BDDs. It is well known that BDDs are very
sensitive to the chosen variable ordering, i.e. the size may
vary from linear to exponential.

Basic Idea

Before the algorithm is described in detail, the

underlying main idea and the resulting four steps of our
technique are first illustrated by a simple example:

Consider the n-bit adder with operands a and b, where
a0 and b0 denote the least significant bit, respectively. It is
known for adders that an interleaved order gives an optimal
result, if the bits are ordered from the least to the most
significant bit, i.e.:

a0, b0, a1, b1, a2, b2, …, an-1, bn-1

In this case the resulting BDD has linear size. But if

the operands are separated, like

a0, a1, a2, a3, …, an-1, b0, b1, …, bn-1,

the resulting BDD has exponential size.

The proposed technique works in four steps:

1. Build the BDD for a small number of bits only.
2. Perform an optimization based on dynamic

reordering.
3. Analyze the ordering and generalize it to an n-bit

order.
4. Build the BDD for the large number of bits based

on a static ordering.

In the example we start with the “worst case”
ordering, i.e. for the adder this means that the two operands
a and b are separated. If we start with a small number of
bits, e.g. 10 bits, then sifting determines an interleaved
ordering that is afterwards generalized and used as a static
ordering for building a 32-bit adder.

The benefit of this approach is obvious: Since the time
consuming Step 2 of BDD minimization is only carried out
on a small design with a small number of variables, the
algorithm runs very fast and due to the regularity of the
design the quality is very good as will be shown by
experiments later.

Even though the method is simple regarding the
general approach, it has shown to be very effective. In the
following we first describe the analysis phase in more detail
and then discuss case studies of scalable designs. It is
shown that speed-ups of several orders of magnitude can be
achieved.

Scaling BDD Ordering

While the processing in Steps 1, 2 and 4 in the

previous section are rather obvious, the crucial step in the
approach is the analysis phase. Based on the ordering for
the small example the ordering for the n-bit version is
extrapolated. The approach would of course benefit from
various runs, i.e. if several orders could be considered. This
results from the fact that sifting is also a heuristic approach
and by several runs robustness can be obtained. In the
following only a single variable ordering is studied, since
our experiments have shown that this is sufficient. But, it
should be noticed that this might become necessary for
more complex and more irregular designs.

The resulting ordering is considered as a string of
characters, where in each position the name of the
corresponding input is given. In the example above this
would correspond to e.g. a0 or b5. The text string is
evaluated by determining the relative order of each entry.
This is then matched against existing patterns. From our
studies and assuming regularity in a scalable design, it
turned out that it is sufficient to consider only four patterns:

1. Increasing
2. Decreasing
3. Interleaved increasing
4. Interleaved decreasing

In the case of the adder above, this corresponds to:

1. a0, a1, …, an-1, b0, b1, …, bn-1
2. an-1, …, a1, a0, bn-1, …, b1, b0
3. a0, b0, a1, b1, …, an-1, bn-1
4. an-1, bn-1, …, a1, b1, a0, b0

If blocks are more complex, i.e. they do not consider a

single bit as in the case of the adder, the method has also to
take this hierarchy into account. Notice that the approach
not only works for combinational but also for sequential
circuits. In this case also variables for the present states and
next states are part of the BDDs but they can be treated in
the same way. The next state variables are necessary for
computing the transition relation of the sequential circuit.

In the following the analysis phase is described in
more detail.

Analysis of Ordering

Given a scalable design consisting of n blocks. Then
the corresponding BDD ordering string is of the form “ai bi
ci di …” where i is the number of a block and each character
string corresponds to an input, a current state or a next state
variable of a block. The current state and next state
variables are used for representing the transition relation.
The ordering analysis algorithm is split into two parts. The
first part is used to identify increasing or decreasing
patterns. The second part is applied to identify the
interleaved increasing or decreasing patterns.

A sketch of the analysis algorithm is given in Figure 1.
The first part of the algorithm works as follows (for the

integrated examples assume that the given ordering string
os is “a0 a1 a2 a3 c0 c1 c2 b3 c3 b0 b1 b2”):

1. First the number nv of different variable names

and the different variable names are determined.
(Example: nv is 3 and the variable names are a, c
and b).

2. Now the variables with the same names are
collected and consecutive variables in the ordering
string are enclosed by brackets. This results in
nv strings. (Example: “[a0 a1 a2 a3]”, “[c0 c1 c2] c3”
and “b3 [b0 b1 b2]”).

3. For each string of Step 2 the longest consecutive
string is considered and increasing or decreasing
of indices is measured. This is realized by
comparing the index i of a variable with the index
j of each successor. If i < j then an increasing pair
is found, if i > j the pair is decreasing. In order to
obtain an overall score for increasing/decreasing
of all longest consecutive strings, the number of
all increasing/decreasing pairs is counted.
(Example: increasing is 6+3+3=12 and
decreasing is 0+0+0=0).

4. Now by starting from the left side of the ordering
string the run lengths of consecutive variable
names are counted. From this result the maximum
run length of each variable name is accumulated
to maxf and a list relativeOrderList with the
corresponding variable names is generated.
(Example: 4·a, 3·c, 1·b, 1·c, 3·b, maxf is 10 and
relativeOrderList = a c b).

5. Then the ratio maxf / (number of variables) is
computed. This ratio indicates the probability of
an increasing or decreasing pattern. (Example:
ratio is 10/12 = 0.83).

6. If (ratio ≥ 0.75) then the ordering string is an
increasing or decreasing pattern. In this case the
overall result of the first part of the analysis
algorithm is increasing or decreasing depending
on a comparison of increasing and decreasing
from Step 3 and the relativeOrderList from Step
4. (Example: increasing, because 12 > 0 and “a c
b”, i.e. scaled ordering for n will be “a0 … an-1 c0
… cn-1 b0 … bn-1”).

Notice that the described first part of the analysis

algorithm does not find a solution for interleaved
increasing/decreasing orderings. So to identify this type of
orderings the following pattern matching technique is
applied (assuming ordering string os to be “a0 b0 c0 a1 c1 b1
a2 b2 c2 a3 b3 c3”):

1. First it is determined whether the total ordering is

mostly increasing or mostly decreasing. This
works by comparing the index of a variable with
all the indices of its successor variables
analogously to the third step of the first part of the
analysis algorithm. (Example: mostly_increasing is
9·3+6·3+3·3=54 and mostly_decreasing is 0).

2. In the second step the ordering string is scanned
from the beginning and for each block all variables
are collected. During this scanning also all
consecutive variables of the same block are
enclosed by brackets. This results in n relative
ordering strings roi each containing all variables of
the corresponding block i. The goal of this step is
to determine the relative order within each block.
(Example: ro0=“[a0 b0 c0]”, ro1=“[a1 c1 b1]”,
ro2=“[a2 b2 c2]”, ro3=“[a3 b3 c3]”).

3. Then starting with the longest consecutive string of
block 0, this string is matched against all other
strings of the same length of the following blocks.
This matching works only considering the names
of variables, i.e. for example the string [a0 b0 c0] of
length 3 from block 0 matches the string [a2 b2 c2]
of block 2. The number of matches for every string
is counted. This method is iterated for all
consecutive strings down to length 2. As a result,
every consecutive string obtains a score
determined by string_length · matches. (Example:
highest score is 6=3·2 of ro0).

4. If the ordering string is not as regular as in the
example the string sh with the highest score does
not contain all variables of a block, i.e. sh is only a
sub-string of some roi. So all roi which contain sh
(only variable names are matched) are compared
with all following roj analogously to Step 3. The
most frequently matched roi represents the local
ordering of a block and will be used as a result
together with increasing or decreasing based on
decision of Step 1. (Example: increasing and “a0 b0
c0”, i.e. scaled ordering for n will be “a0 b0 c0 a1 b1
c1 … an-1 bn-1 cn-1”).

With the described analysis algorithm the ordering of

a small instance can be analyzed and a generalization for
larger designs can be computed.

In the following experimental results show the
efficiency of the approach.

Experimental Results

In this section experimental results are given. The

proposed technique has been implemented in C++. All run
times are given in CPU seconds on an Intel Pentium IV
with 1,7 GHz and 512 MByte of main memory. As the
BDD package we used CUDD [11]. The run times given for
our approach always contain the times for the complete
flow, i.e. including analysis and construction for small
instances. For the experiments three scaleable designs have
been considered:

1. Adders
2. Multipliers
3. Arbiters

 Figure 1. Sketch of ordering analysis algorithm

While the first two are combinational instances, the

third class describes a sequential problem, i.e. the
computation of reachable states.

 The first two instances are very different in nature,
since adders are known to be very easy to verify by BDDs,
if a good variable ordering is chosen. But BDDs always
blow up for multipliers. Our experiments will demonstrate

that the approach has significant advantages in both cases:
For adders the construction is sped up significantly for
larger instances, while the method also has benefits for
difficult instances, like multipliers. In this case the method
gives up very fast, while classical approaches, like sifting,
spend a lot of time on useless optimization runs.

scale_ordering(ordering_string os) {
// first part: identify increasing/decreasing
nv = get number of different variable names (os); varNames = get variable names (os);
equalVarNamesList = collect equal variable names and enclose consecutive variables (varNames, nv);
increasing = decreasing = 0;
for (each s in equalVarNamesList) {
 ls = get longest enclosed string(s);
 for (each variable vi in ls) {
 for (each variable vj after vi in ls) {
 if (i < j) increasing++;
 if (i > j) decreasing++;
 }

}
}
runLengthList = count run lengths of consecutive variable names (os);
maxf = accumulate maximum run length of each variable name (runLengthList);
relativeOrderList = maximum frequently variables (runLengthList);
ratio = maxf / (number of variables);
if (ratio ≥ 0.75) {
 if (increasing > decreasing) return (increasing, relativeOrderList);
 else return (decreasing, relativeOrderList);
}
// second part: identify interleaved increasing/decreasing
mostly_increasing = mostly_decreasing = 0;
for (each variable vi in os) {
 for (each variable wj after vi in os) {
 if (i < j) mostly_increasing++;
 if (i > j) mostly_decreasing++;

 }
}
roList = collect variables belonging to the same block and enclose consecutive variables (os);
roLengthList = get different lengths of consecutive variable strings (roList);
for (decreasing length l in roLengthList) {
 roSameLengthList = get all consecutive variable strings with length l (roList);

for (each s in roSameLengthList) {
 for (each t in roSameLengthList after s in roSameLengthList) {
 if (s matches t) matches++;
 }
 score[s] = l · matches;
 }
}
sh = get string with highest score (score);
if (sh does not contain all variables of a block) {
 roContainShList = get all roi where sh matches (roList);

compare each s in roContainShList with all t in roContainShList after s;
sh = most frequently matched string of comparison;

}
if (mostly_increasing > mostly_decreasing) return (interleaved increasing, sh);
else return (interleaved decreasing, sh);

}

Adders
The results for the adder circuits are given in Table 1.

In the first column the number of bits to be added are given.
Then for both approaches Memory and Time denote the
memory in MByte used by the BDD manager and the run
time in CPU seconds, respectively. A time limit for BDD
construction of 2 CPU hours has been set. As can be seen,
already for 20 variables, the new approach outperforms
sifting. For 500 variables, the scaling technique is nearly a
factor of 10 faster.

Table 1. Results for adders

Bits Sifting Scaling
 Memory Time Memory Time

10 4.62 0.01 4.64 0.09
20 4.64 0.05 4.64 0.09
30 4.66 0.08 4.64 0.10
40 4.68 0.15 4.64 0.12
50 4.71 0.26 4.64 0.13
60 4.73 0.34 4.64 0.16
70 4.75 0.48 4.67 0.19
80 4.77 0.62 4.69 0.22
90 4.79 0.90 4.71 0.25

100 4.81 1.12 4.73 0.30
200 5.02 7.64 4.97 1.54
300 5.22 23.94 5.19 5.05
400 5.43 55.99 5.43 10.05
500 5.69 114.13 5.65 15.83
600 - - 5.89 22.96
700 - - 6.12 31.49
800 - - 6.36 40.85
900 - - 6.59 51.67

1000 - - 6.82 64.46
1100 - - 11.06 77.40
1200 - - 11.28 92.41
1300 - - 11.52 108.64
1400 - - 11.74 126.10
1500 - - 11.98 144.39

Multipliers

In a next series of experiments we consider multiplier
circuits. It is well known that BDDs always become
exponential in the number of variables independent of the
chosen variable ordering [3]. For this, it is interesting to
study the run time of the algorithms until they give up. We
started with a live node limit of 2,000,000 BDD nodes. For
up to 12-bit multipliers the BDDs can be constructed. For
larger instances the construction failed (shown in italic).
We report the memory consumption and the run time for
sifting and our approach until 12-bit. Beyond 12-bit the
memory and run time used until the construction failed is
given. In case of sifting the values are not monotonically
increasing because sifting is called dynamically by the
BDD package. Since, in the final phase of our approach a
static variable ordering is applied, the limit is reached very
fast, as can be seen in Table 2. Compared to sifting a speed-
up of more than a factor of 20 can be observed for a 12-bit
multiplier.

Table 2. Results for multipliers
Bits Sifting Scaling

 Memory Time Memory Time
5 4.55 0.04 5.44 0.87
6 4.66 0.10 5.44 0.92
7 4.78 0.26 5.44 1.03
8 5.44 0.81 5.90 1.29
9 6.33 6.47 8.82 1.96

10 13.52 18.26 29.89 3.89
11 30.26 101.69 57.48 11.08
12 53.03 721.77 59.65 35.00
13 68.17 1047.09 58.21 23.45
14 76.59 1452.54 61.70 37.87
15 73.31 1329.90 63.14 46.91
16 65.25 808.06 62.89 46.44
17 74.51 1362.95 60.03 54.56
18 55.31 538.30 65.52 63.07
19 70.77 1018.71 60.06 66.78
20 55.81 604.59 60.40 73.02

Arbiters

As a sequential benchmark for our experiments we
considered a scalable bus arbiter. This circuit is often used
for experiments in formal verification (see e.g. [8,9]). In the
upper part of Figure 2 a single arbiter cell is shown,
whereas the composition to an n-cell arbiter is given in the
lower part.

W

T

req_in
ack_out

grant_inoverride_outtoken_in

token_out override_in grant_out

token_out

token_in

req_in

override_in grant_out

override_out grant_in

ack_out

token_out

token_in

req_in

override_in grant_out

override_out grant_in

ack_out

0

Cell 0

Cell n-1

token_out

token_in

req_in

override_in grant_out

override_out grant_in

ack_outCell 1

Figure 2. A scalable bus arbiter

For the resulting circuit a computation of the

reachable states is carried out. For the new approach the
analysis phase was run on an example with 20 cells. The
run times are negligible, since also sifting for these

instances needs nearly no time. In the following we give the
results for a complete reachability analysis using sifting and
the scaling approach. The results are given in Table 3. In
the first column the number of arbiter cells is given. The
second column shows the overall number of BDD
variables. Then as above for both approaches memory and
time is given.

As has been shown in [4] the reachability analysis can
be performed up to n=11 bits with 512MB of memory, if
the original variable ordering as it occurs in the benchmark
description is used and sifting is disabled. With sifting this
can be improved. But already for 300 cells more than 7200
CPU seconds (corresponding to 2 CPU hours) are needed.
The arbiter with 200 cells already takes more than 3000
CPU seconds, while the scaling approach can handle this
instance - including the pre-processing - within 5 seconds,
i.e. a speed-up of more than a factor of 600. Using the new

technique the complete reachability can be computed for up
to 1500 arbiter cells in about 1000 CPU seconds.

Conclusions

A new approach for finding BDD orderings has been

proposed. This technique works for scalable designs and
makes use of high-level information. Experimental results
have demonstrated the quality of the approach. In contrast
to dynamic reordering improvements of several orders of
magnitude have been observed.

It is focus of current work to integrate the approach in
an existing verification flow [5]. Here it is important that
the ordering can be given to the tool without changing any
of the internal structures, but in the form of a pre-
processing.

Table 3. Results for scalable arbiter

References

[1] B. Bentley. Validating the Intel Pentium 4

microprocessor. In Design Automation Conf., pp.
244-248, 2001.

[2] R.E. Bryant. Graph-based algorithms for Boolean
function manipulation. IEEE Trans. On Comp.,
35(8):677-691, 1986.

[3] R.E. Bryant. On the complexity of VLSI
implementations and graph representations of
Boolean functions with application to integer
multiplication. IEEE Trans. On Comp., 40:205-213,
1991

[4] R. Drechsler and D. Große. Reachability Analysis
for Formal Verification of SystemC, EUROMICRO
Symposium on Digital System Design (DSD'2002),
Dortmund, pp. 337-340, 2002

[5] R. Drechsler, S. Höreth, Gatecomp: Equivalence
Checking of Digital Circuits in an Industrial

Environment, International Workshop on Boolean
Problems, pp. 195-200, 2002

[6] H. Fujii, G. Ootomo, C. Hori, Interleaving Based
Variable Ordering Methods for Ordered Binary
Decision Diagrams, ICCAD, pp. 38-41, 1993

[7] A. Kuehlmann, M. Ganai, V. Paruthi, Circuit-Based
Boolean Reasoning, In Design Automation
Conference, pp. 232-237, 2001

[8] K.L. McMillan. Symbolic Model Checking. Kluwer
Academic Publisher, 1993.

[9] J. Ruf, D. Hoffmann, T. Kropf, and W. Rosenstiel.
Simulation-guided property checking based on multi
valued AR-automata. In Design, Automation and
Test in Europe, pp. 742-748, 2001.

[10] R. Rudell, Dynamic Variable Ordering for Ordered
Binary Decision Diagrams, ICCAD, pp. 42-47, 1993

[11] F. Somenzi. CUDD: CU Decision Diagram Package
Release 2.3.1, University of Colorado at Boulder,
2001.

Cells BDD Sifting Scaling
 Variables Memory Time Memory Time

100 500 13.37 195.93 8.05 1.18
200 1000 39.91 3126.84 31.93 4.55
300 1500 - - 37.75 12.79
400 2000 - - 48.73 28.25
500 2500 - - 47.29 49.45
600 3000 - - 54.27 81.65
700 3500 - - 57.32 122.31
800 4000 - - 57.74 176.23
900 4500 - - 61.63 238.55

1000 5000 - - 66.10 320.48
1100 5500 - - 67.02 412.10
1200 6000 - - 72.92 540.57
1300 6500 - - 79.79 670.39
1400 7000 - - 87.47 822.19
1500 7500 - - 100.23 1006.89

