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Abstract

Nowadays the importance of hardware description language (HDLs) grows, espe-
cially in the area of circuit design and verification. But using HDLs may cause some
special faults in the circuit’s design. Therefore the analysis of algorithms by means
of a complete symbolic simulation before the implementation is an important and
interesting topic. An essential problem for this kind of simulation is the complexity
of the representation of sets of numbers. We present a method for the representation
of these sets using reduced ordered binary decision diagrams (ROBDDs) with which
a simulation as mentioned above (performed step-by-step) of many algorithms will
become possible. Important functions like shift and rotate can be implemented with
a polynomial complexity (compared to an exponential worst case complexity if, for
instance, word level diagrams are used instead of ROBDDs). Using our method an
algorithm simulator has been implemented, and first experimental results are shown
in this paper, e.g. for a Bubblesort sorting algorithm.

1 Introduction

The circuit design on a high, algorithm-near level offers the designer various useful features,
like e.g. short design terms, reuse of complex modules, independence of the circuit’s implemen-
tation technique. However many of these advantages contain the risk that the designer works
inaccurately, overlooks some minor details and therefore describes a faulty algorithm. That is
why the task of proving the correctness of an algorithm’s design is a very important subject.
But “correctness” means here “correspondence with the designer’s intentions” and these inten-
tions can hardly be recognized (except with the help of another formal representation of the
algorithm that may be faulty too). Nevertheless some basic properties of an algorithm can be
examined to get an impression of its correctness, for instance: reachability of steps, occurence
of deadlocks in loops, possible values of signals at each step etc.

S. Minato showed in [7] that several algorithms can be described using binary decision diagrams
(BDDs). With this description the equivalence of two algorithms (one to be tested and one
that is known to be correct) can be proven or refuted; a major problem of this method is that
some endless loops cannot be detected. Other methods are based on proofs of theorems but
often they need user’s special knowledge to work properly (e. g. see [5] and [9]).



Another way of analysis is the symbolic simulation that is still applied to combinational cir-
cuits. It may also be performed step-by-step on sequential circuits (that contain loops). One
important difficulty is the complexity of the representation of sets of values. As shown later
not only large value sets must be stored but even large sets of value combinations. As well the
system must be able to handle these sets efficiently.

We will show a method for the representation of these sets by using reduced ordered binary de-
cision diagrams (ROBDDs). So an efficient complete symbolic simulation will become possible
for many sequential algorithms. Such a simulation allows to analyse many of the algorithm’s
important properties as mentioned above. The algorithms to be simulated are constructed
with a CAD system which was implemented and is currently used by the industry. They de-
scribe integrated circuits that are used as PC components at the industrial PC production.
Furthermore we will present some experimental results.

2 Preliminaries

2.1 Binary Decision Diagrams
For the further understanding we define binary desicion diagram (see [3] for more details).

Definition 2.1 (Binary Decision Diagram) A binary decision diagram (BDD) is a directed
rooted acyclic graph with the following properties:

e Fach terminal node is marked with “1”7 or “0” and represents the corresponding constant
boolean function.

e Each non-terminal node v has two successors (Vpigh and viey,) and is marked with a variable
Ty. The node v represents the function f, = Ty fu,;, + Tofo, -

e A BDD is called ordered if the order of the variables is the same on each path from the
root to a terminal node.

o A BDD is called reduced if no node v exists in the BDD for which vhigh = Vjow holds, and
if the BDD does not contain any isomorph subgraphs.

o “fo”7 describes the boolean function represented by the BDD G.
An ordered BDD is called OBDD, a reduced OBDD is called ROBDD.

In the past it turned out that many boolean functions can be represented very efficiently
using ROBDDs. As well most of the basic functions to be performed on ROBDDs like binary
synthesis, satisfiability or equivalence-check have small complexities. However a ROBDD'’s size
depends heavily on the variables’ order. At last we need the following

Definition 2.2 (On-Set) The On-Set of a boolean function f is the set of input vectors x for
which f(x) =1 holds.

2.2 Finite State Machine Design Tool

The algorithms to be analysed are designed with a commercially used design tool (from now on
we will call this tool CDT so that we can refer to it). The alorithms form resembles a finite state
machine (FSM). CDT includes a graphical user interface and a basic syntax checker. Therefore
even untrained designers can handle it easily.

A CDT-FSM represents an algorithm with input signals, output signals, control structures etc.
The representation contains some special construction elements that support the algorithm’s
transformation into a circuit. It consists mainly of the following parts:



e states (more general: steps)
A state-step is a point of synchronisation. Output signals are written to the external bus,
new input signals are read from the bus; the contents of variables are updated. With if-
and case-steps conditional jumps can be realized. At an assign-step values or expressions
can be assigned to variables.

e signals
New values of input signals are read from the bus when a state-step is reached. However
variables hold their values. Qutput signals are irrelevant for the control flow and therefore
are left out of consideration here.

e operators and functions
For the definition of expressions there is an extensive set of operators and functions. It
includes comparative (e.g. <,<=,=,<>,>=,>), arithmetic (+, —) and logical operators
(AND, OR, NOT) as well as functions like rotate, shift ...

A CDT-FSM can be translated automatically into a VHDL algorithm (see [8]). In the appendix
there’s a picture of an example CDT-FSM that represents the following “program”:

1 define var_1 as variable[3]

2 define count as input/1]

8 reset

Sa wvar-1 =0

4 input count

5 if (count==1) then goto 6 else goto 8
6 wvar-1 =war-1 + 1

7 goto 4

The function of this program: increment the variable var_1 as long as the input count is equal
to 1. If count is equal to 0 then reset the system.

As mentioned before CDT was implemented at a PC producing company and is used for
designing integrated circuits. It is the first tool to be used in the design and production process
and the one that needs the most user interaction so it is a very important program. In the
middle term our work aims at the development of an algorithm simulator which is integrated
in CDT and informs the designer online about possible design errors, redundant steps etc.

3 Symbolic Representation

3.1 Representation of Sets of Values by ROBDDs

One main problem with the symbolic simulation of an algorithm is the complexity of the
representation of sets of values. The information which values all signals (inputs and variables)
may assume must be stored for each moment of the simulation. And often the values of different
signals will be interdependent. Look at the following example:

define in_1 as input[2]

define in_2 as input(2]

mnput in_1

mput 1n_2

if (in-1==in_2) then goto 6 else goto 10
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Both inputs are defined as being two bits wide. So they can obtain values from 0 to 3. After
step 4 the values of the two inputs are unknown therefore

in_1€{0,1,2,3}, in2 € {0,1,2,3}

holds. In step 5 both inputs’ value ranges are not changed, the statement above still holds.
But to describe the dependence of the two inputs the value set

(in-1,in2) € {(0,0), (1,1), (2,2),(3,3)}

must be stored for the “then”-successor of step 5 and

for the “else”-successor.

We see that even the possible combinations of values must be stored. In addition the sim-
ulation program must be able to handle these large value sets efficiently.
The following kinds of sets are especially important for FSMs:

e complete sets
At a state-step the new values of input signals are read from the signal bus. In the
simulation an input’s value is now unknown. Therefore the set describing this input must
contain all possible values. That means it is complete.

e sets consisting of a few numbers
At the start of the simulation variable signals are set to default values. During most time
of the simulation each variable will have only one possible value (or some few values if,
for instance, different branches of a case-step reconverge in the same directly successing

step).

e almost complete sets
Often an if-step has a form like “if (input==-constant) ...” or “if (input<constant) ...”. At
the “else”-successor the input’s value may be one of many (or one of almost all possible)
values then.

ROBDDs seem to be suitable to fulfil all these demands if the integer values of a signal are
represented by a boolean function f in the following way:

Definition 3.1 (Representation of Sets of Numbers by ROBDDs) Let Z be a subset of
the natural numbers and G a ROBDD; let x;,; be a natural number and xp;, be the same number
in binary form (any coding schema). Then the following holds:

G represents T =~ <= [ty € T S Ty € On(fg)/



Some major advantages of this way of description are:

e For complete value sets holds: fg = 1. The ROBDD for this function consists of one
terminal node only.

e The functions representing small (or nearly complete) sets contain few minterms (or the
negation of few minterms). ROBDDs for these functions are also small.

e The union (and the intersection) of two sets of values represented by ROBDDs can be cal-
culated by using efficient ROBDD standard functions (OR- and AND-synthesis). Adding
a value to or removing it from a set is also done with standard functions.

e Determining whether a value belongs to a set is easy and has a low complexity.

e Many operations (comparative, arithmetic, logical) can be implemented easily and effi-
ciently for value sets described by ROBDDs. This will be shown in the following sections.

With a little modification this method can be extended from the representation of values of one
signal to the representation of value combinations for several signals. For this purpose ROBDD
variables are defined for all bits of all signals that occur in the algorithm. So each signal is
described by its own set of ROBDD variables, these sets must be disjunct. Then one minterm
of the ROBDD G describes values for each signal (in other words: a combination of values).
Of course this kind of representation can be used for numerical values as well as for boolean
values. It is also applicable to different numerical encodings like the binary system, the 2-
complement, the Gray code etc.

3.2 The Rotate-/Shift-Function

As an example we have a close look at the rotate- and the shift-functions. These functions
are very important in the field of circuit design (see also [6]). With respect to the description
method shown above these functions can be defined as follows:

Definition 3.2 (Shift-Function)

shift left(fa(z1, ..., 20)) = (fa(za, .., Tn,0) + fa(xa, ..., 20, 1)) - T1
Shiﬁ—right(fG’(xla LRI ,’En)) = (fG(Oaxla .. ,xnfl) + fG(laxla .. amnfl)) - ﬁ

Definition 3.3 (Rotate-Function)

rotate_left(fa(x1,...,2,)) = fo(za,...,2Tn,21)
rotate_right(fe(z1,...,2,)) = fe(@n,x1,...,Tn_1)

Both left-functions (right-functions) move the bit pattern to the most significant bit (least
significant bit), represented by x, (z1). The shift_left-function (shift_right-function) sets the
least significant bit (most significant bit) to 0. For the estimation of the functions’ complexities
we need the following two definitions:

Definition 3.4 (Order-Function for ROBDD-Variables) The order-function ord(i) returns
the position of an ROBDD’s variable x; in the variable order of the DD.

Definition 3.5 (Natural Order of ROBDD-Variables) The variables of an ROBDD are
in natural order, if ord(x;) =i holds for each variable.



Shift_Left-Function

The following circumstances may be given:

e The value sets of some signals are coded in the ROBDD G. G represents the boolean

function fg.

e var; is the signal whose bit pattern is to be moved. It is described by the ROBDD-

variables x;, to z;, . x; is the least significant bit, z; the most significant.

The variables z;, to x;, are naturally ordered. They form a closed block. So the position
of a variable corresponds to its significance.

Now the shift_left-function can be realized as follows:

Build the ROBDD G, that describes the function f = Jzi, =0+ [z, =1

Loop over all nodes of G that are marked with a variable from x;, to z;,_,
Change the marking variable for each node from z;; to x;,

end of loop ~

Now f is the function represented by G. Build the ROBDD for the function

fnew = fCC_“

SARSINCES

Explanations (see also [2] for details):

Step 1: G may be calculated using the ITE-function. This function’s complexity is
quadratic in |G| = |G| < |G|? holds.

Step 2: In the worst case (if G represents the value set of only one signal, vary) all nodes
of the ROBDD must be visited = there is a maximum of |G| many loop runs.

Step 3: The exchange of a variable (or its index) may be done in constant time = as a
whole the loop has a complexity that’s at most linear in |G/|.

Step 5: Because the ROBDD representing 7;; consists of one non-terminal node only this
operation has a linear complexity in |G]|.

In general: Because the variables are naturally ordered (see preconditions) the application
of the shift_left-function does not change this order.

Therefore the shift_left-function’s complexity is quadratic in the size of the given ROBDD.

Rotate Right-Function

Let the preconditions be the same as for the shift_left-function. Then the rotate_right-function
can be implemented as follows:

1. Loop over all nodes of G that are marked with a variable from x;, to x;, :
2 For j > 2: Change the marking variable for each node from x;; to x;,_,
3. For j =1: Change the marking variable to x;,

4. end of loop



Explanations:

e Step 1: In the worst case (if |G| represents the value set of only one signal, var;) all nodes
of the ROBDD must be visited = there is a maximum of |G| many loop runs.

e Steps 2 and 3: The exchange of a variable (or its index) may be done in constant time =
as a whole the loop has a complexity that’s at most linear in |G].

e In general: Because the variables are naturally ordered (see preconditions) the application
of the rotate right-function changes this order (x; travels from the last position to the
first position). So x; must be moved back through n — 1 levels; that is possible with
quadratic complexity in |G| (see [1]).

Therefore the rotate_right-function’s complexity is quadratic in the size of the given ROBDD.

Altogether we showed that the two important functions shift and rotate have a polynomial
(more exact: quadratic) complexity if applied on value sets as described in Section 3.1. This is
a clear advantage of our method over others like using word level diagrams for the representa-
tion of value sets as described in [6], for instance (the worst case complexity of both functions
is exponential for the latter method).

Tests

For testing the results of Section 3.2 in reality we implemented a CDT-FSM in which a constant
value is assigned to a variable. Then the variable’s contents is shifted (or rotated) fifty times
(see also Section 4).

The CUDD package version 2.3.0 by F. Somenzi is used for the construction and handling
of the ROBDDs (see [10]). On a PC (Pentium-CPU, 266 MHz, 128 MB RAM, Cygnus B20

environment) the following running times can be observed:

variables’ width | time rotate_right | time shift_left | size of ROBDD
[bits] [seconds] [seconds] [nodes|
32 0.3 0.2 39
64 1.6 1.4 73
128 5.6 6.9 135
256 19.0 29.0 263

We see that even for large variables’ widths the algorithm can be simulated efficiently. As
expected the simulation of the shift-function takes longer time than that for the rotate-function.
Furthermore the doubling of the variables’ width (that means the doubling of the size of the
ROBDD that represents the variables’ values, too) causes the quadrubling of the running time.
This confirms the complexity proof of Section 3.2.

Overall, our way of simulation can handle the shift- and rotate-functions very efficiently.

4 Simulation Procedure

As mentioned before the simulation is performed step-by-step. For each step s of the simulated
algorithm there exists one ROBDD G, that describes the combination of signal values that
may occur in s. Each signal is represented by its own set of ROBDD variables. Therefore one



minterm describes one combination of signal values (for all signals).
Simulating step s, the ROBDDs for the succeeding step (or steps) of s are built corresponding
to the function of s. For instance look at the following algorithm:

1 reset

11 if (in_1==0) then goto 12 else goto 15
12 in 2 =12 + 1

18 input in_1

14

(12 contains all minterms of G1; in which the value of input in_1 is described as being equal
to zero. All other minterms are transferred to Gs.

Then the simulation is continued with steps 12 and 15. The steps’ order depends on the steps’
levels (the level is the maximum distance of a step to the reset step). The lower the level of
step s the earlier will s be simulated.

From step 13 on the value of in_I is unknown and may be each of all possible values (depending
on the width of input in_1). To simulate this fact all ROBDD variables that describe in_1 are
existentially quantified in (13, thus eliminating G13’s dependence on these variables. Now the
value combinations of the other signals may occur together with each possible value of in_1.
The simulation runs fully automatically and provides the user with many informations that are
very useful for analysis and verification of the simulated algorithm. For instance:

e A list of unreachable steps is generated.
e For each step the possible signal values and value combinations can be shown.

e It can be decided if a step is really necessary for the algorithm’s functionality. Look at
the example at the beginning of this section. If in_I can never be equal to zero (or is
always) in step 11 this step is unnecessary. Even step 12 (step 15) and all its successors
are unnecessary if they cannot be reached by a path that doesn’t contain step 11.

4.1 Case Study

As a case study we constructed a CDT-FSM representing the Bubblesort sorting method. This
algorithm is easily scalable and therefore very useful for our tests. In the corresponding FSM
some descending constant values are assigned to a set of variables and these variables are sorted
afterwards with the following method.

i:=1, j:=1, loop_start:=1
i:=loop_start
jr=i-1
if (variable[j]>variable[i]) then goto 5
else goto 8
swap(variable[j],variable[i])
i:=i-1
if (i==0) then goto 8 else goto 3
loop_start:=loop_start+1
if (loop_start==10) then goto 10
else goto 2
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10 end



In step 9 the check of loop_start’s value must correspond to the number of variables to be
sorted. The results of this test:

variables’ count | variables’ width time size of ROBDD | number of
[bits] [seconds] [nodes| reorderings

10 5 4.6 75 0

10 10 14.8 125 16

16 10 72.1 185 22

10 16 154.6 185 34

16 16 419.5 281 49

The reorderings (of ROBDD variables) are performed automatically by the BDD manager. The
test shows:

e Of course the total running time of the simulation depends on the number of variables
because the complexity of the algorithm itself is quadratic in the number of elements to
be sorted.

e As well the variables’ width influences the running time. But this effect does not seem to
be too bad (compare rows 1 and 2 of the table above or rows 3 and 5).

e For the largest test 16 variables have been used, each of them with a width of 16 bits.
That means that 256 ROBDD-variables were needed for the representation of all variables.
Even for this large number the simulation could be done in a reasonable time.

e The size of the ROBDD (measured after each simulation step) is constant because the
information to be stored in the BDD remains always the same. Only the order of the
values is changed.

We see that a complete symbolic simulation is possible not only for very small algorithms but
even for more complex, non-trivial examples containing loops.

5 Conclusions

We have introduced a method for representing sets of values by using ROBDDs. Important
functions can be applied efficiently to these sets. Therefore we can perform complete symbolic
simulations on many algorithms (even sequential ones) in reasonable time. A simulator has
been implemented that doesn’t need any user interaction. The simulation’s results can be used
to verify the algorithm’s functionality and to show the necessity of the algorithm’s steps (among
other things).

Next we want to test whether other types of decision diagrams (e.g. see [4]) can be used
instead of ROBDDs to enhance the performance and capabilities of our simulator. In addition
we will try to integrate the algorithms control flow into the ROBDDs so that other, even more
performant simulation methods will become applicable and also large commercial circuits can
be simulated fully automatically.
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Appendix

3 State

Reset-State

>
A

4 State

6 assign

var_ 1:=var_1+1

Example CDT-FSM
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