
Intermediate Verification Language
for SystemC

(IVL)

Vladimir Herdt, Hoang M. Le, Daniel Große, Rolf Drechsler

8 March 2018

http://www.systemc-verification.org/sissi

Language Reference Manual
Version 1.0

University of Bremen

1

http://www.systemc-verification.org/sissi

Contents

1 Introduction 3

2 Background on SystemC 3
2.1 SystemC Simulation Semantics . 4

3 Overview 5

4 Syntax and Semantics 7
4.1 Reserved Identifiers . 8
4.2 Statements . 9
4.3 Expressions . 10
4.4 Type system . 13

5 Execution Semantics 14

6 Example Translation: SystemC FIFO in IVL 16
6.1 FIFO Behavior Description . 16
6.2 Translation to IVL . 18

7 References 19

2

1 Introduction

The SystemC Intermediate Verification Language (IVL) has been introduced in [7]
with the purpose of simplifying the verification process of SystemC program, by
separating it into two independent steps. The idea is that first a front-end converts
a SystemC program into an IVL program, which is then verified by a separate back-
end. The IVL has been designed to be compact and easily manageable but at the
same time powerful enough to allow the translation of SystemC designs. A back-
end should focus purely on the behavior of the considered SystemC program. This
behavior is fully captured by the SystemC processes under the simulation semantics
of the SystemC kernel. Therefore, a front-end should first perform the elaboration
phase, i.e. determine the binding of ports and channels. Then it should extract and
map the design behavior to the IVL. Separating the verification process of SystemC
programs into two independent tasks makes both of them more manageable. The
properties of IVL and the resulting advantages include:

• Compact, intuitive and readable language: IVL has been designed in such
a way that both manual and automatic transformations from SystemC are
possible.

• Independent development of front-end and back-end: IVL enables to focus on
the problem that the user wants to address.

• Open language and support: IVL is open and a free parser is provided. More-
over, all freely available benchmarks used by existing formal verification ap-
proaches for SystemC have been transformed into an extensive IVL bench-
mark set. This accelerates research in particular with respect to new formal
approaches.

In the following the structure and key components of the IVL are discussed in
more detail. We start by reviewing essential background on SystemC in Section 2.
Then provide a high-level overview of the IVL in Section 3. The following two
sections provide more details on the IVL syntax and semantic (Section 4) and sim-
ulation semantics (Section 5). Finally, in Section 6 we translate the SystemC fifo
example to IVL and comment on the process.

2 Background on SystemC

In the following only the essential aspects of SystemC are described. SystemC has
been implemented as a C++ class library, which includes an event-driven simulation
kernel. The structure of the system is described with ports and modules, whereas
the behavior is described in processes which are triggered by events and commu-
nicate through channels. A process gains the runnable status when one or more
events of its sensitivity list have been notified. The simulation kernel selects one
of the runnable processes and gives this process the control. The execution of a
process is non-preemptive, i.e. the kernel receives the control back if the process has
finished its execution or suspends itself by calling wait(). SystemC provides three

3

types of processes with SC THREAD being the most general type, i.e. the other
two can be modeled by using SC THREAD. For event-based synchronization, Sys-
temC offers many variants of wait() and notify() such as wait(time), wait(event),
event.notify(delay), event.notify(), etc.

• wait(event) blocks the current process until the notification of the event.

• notify(event) performs an immediate notification of the event. Processes wait-
ing on this event become immediately runnable in this delta cycle.

• notify(event, delay) performs a timed notification of the event. It is called
a delta notification if the delay is zero. In this case the notification will be
performed in the next delta phase, thus a process waiting for the event becomes
runnable in the next delta cycle.

• wait(delay) blocks the current process for the specified amount of time units.
This operation can be equivalently rewritten as the following block { sc -

event e; notify(e, delay); wait(e); }, where e is a unique event.

Additionally, the suspend(process) and resume(process) functions can be used
for synchronization. The former immediately marks a process as suspended. A
suspended process is not runnable. The resume function unmarks the process again.
It is a form of delta notification, thus its effects are postponed until the next delta
phase of the simulation. Suspend and resume are complementary to event-based
synchronization. Thus a process can be suspended and waiting for an event at the
same time. In order to become runnable again, the process has to be resumed again
and the event has to be notified.

2.1 SystemC Simulation Semantics

The execution of a SystemC program consists of two main steps: an elaboration
phase is followed by a simulation phase. During elaboration modules are instan-
tiated, ports and channels are bound and processes registered to the simulation
kernel. Basically elaboration prepares the following simulation. It ends by a call
to the sc start function. An optional maximum simulation time can be specified.
The simulation kernel of SystemC takes over and executes the registered processes.
Basically simulation consists of five different phases:

1. Initialization: Processes are made runnable.

2. Evaluation: A runnable process is executed or resumes its execution. In case
of immediate notification, a waiting process becomes runnable immediately.
This step is repeated until no more processes are runnable.

3. Update: Updates of channels are performed. These updates have been re-
quested during the evaluation phase.

4. Delta notification: If there are delta notifications, the waiting processes are
made runnable, and then the simulation is continued with the Evaluation step.

4

5. Timed notification: If there are timed notifications, the simulation time is
advanced to the earliest one, the waiting processes are made runnable, and the
simulation is continued with the Evaluation step. Otherwise the simulation is
stopped.

The interested reader is referred to [3, 5, 2] or the IEEE standard [6] for more
details on SystemC.

3 Overview

The IVL is the stepping stone between a front-end and a back-end. Ideally, it should
be compact and easily manageable but at the same time powerful enough to allow
the translation of SystemC designs. Our view is that a back-end should focus purely
on the behavior of the considered SystemC design. This behavior is fully captured by
the SystemC processes under the simulation semantics of the SystemC kernel. Thus,
a front-end should first perform the elaboration phase, i.e. determine the binding of
ports and channels. Then it should extract and map the design behavior to the IVL.
The IVL is described in the following Based on the simulation semantics of SystemC,
we identify the three basic components of the SystemC kernel: SC THREAD (the
other two SystemC processes can also be modeled by using SC THREAD), sc -
event and channel update. These are adopted to be kernel primitives of the IVL:
thread, event and update, respectively. Associated to them are the following primitive
functions:

• suspend and resume to suspend and resume a thread, respectively;

• wait and notify to wait for and notify an event (the notification can be either
immediate or delayed depending on the function arguments);

• request update to request an update to be performed during the update phase.

These primitives form the backbone of the kernel and follow precisely the simu-
lation semantics of SystemC (see [6]). Other SystemC constructs such as sc signal,
sc mutex, static sensitivity, etc. can be modeled using this backbone.

The behavior of a thread or an update is defined by a function. Functions which
are neither threads nor updates can also be declared. Every function possesses
a body which is a list of statements. We allow only assignments, (conditional)
goto statements and function calls. Every structural control statement (if-then-else,
while-do, switch-case, etc.) can be mapped to (conditional) goto statements by a
front-end. Therefore, the representation of a function body as a list of statements
is general and at the same time much more manageable for a back-end, e.g. it
has no longer to handle (potentialy nested) scopes and can keep track of the active
statement in a function using a single index (i.e. instruction pointer). The well-
known LLVM-IR as well as the CBMC verification backend take a similar approach.

As data primitives the IVL supports Boolean and integer data types of C++
together with all arithmetic and logic operators. Furthermore, arrays and pointers
of primitive types are also supported. Additionally, bit-vectors of finite width can

5

1 SC_MODULE(Module) {

2 sc_core::sc_event e;

3 uint x, a, b;

4
5 SC_CTOR(Module)

6 : x(rand()), a(0), b(0) {

7 SC_THREAD(A);

8 SC_THREAD(B);

9 SC_THREAD(C);

10 }

11
12 void A() {

13 if (x % 2)

14 a = 1;

15 else

16 a = 0;

17 }

18
19 void B() {

20 e.wait();

21 b = x / 2;

22 }

23
24 void C() {

25 e.notify();

26 }

27 };

28
29 int sc_main() {

30 Module m("top");

31 sc_start();

32 assert(2 * m.b + m.a == m.x);

33 return 0;

34 }

Figure 1: A SystemC example

1 event e;

2 uint x = ?(uint);

3 uint a = 0;

4 uint b = 0;

5
6 thread A begin

7 if x % 2 goto elseif

8 a = 0

9 goto endif

10 elseif:

11 a = 1

12 endif:

13 end

14

15 thread B begin

16 wait (e);

17 b = x / 2;

18 end

19
20 thread C begin

21 notify (e);

22 end

23
24 main begin

25 start;

26 assert (2 * b + a == x);

27 end

Figure 2: The example in IVL

be declared. This enables the modeling of SystemC data types such as sc int or
sc uint in the IVL.

For verification purpose, the IVL provides the assert and assume builtin func-
tions. More expressive temporal properties can be translated to FSMs and embedded
into an IVL description by a front-end. Symbolic values of primitive types are also
supported.

The IVL does not support dynamic instantiation of SystemC constructs, i.e.
as already mentioned we require a front-end to evaluate the elaboration phase to
extract the SystemC architecture. Support for C++ classes, function pointers and
exceptions is missing. A front-end is required to map these features to the IVL
primitives, e.g. by unpacking classes (as also demonstrated in the following SystemC
example).

Example 1. a) SystemC Example: Fig. 1 shows a simple SystemC example. The
main purpose of the example is to demonstrate the main elements of the IVL. The
design has one module and three SC THREADs A, B and C. Thread A sets variable
a to 0, if x is divisible by 2, and to 1 otherwise (Line 13-16). Variable x is initialized
with a random integer value on Line 6 (i.e. it models an input). Thread B waits for
the notification of event e and sets b = x / 2 subsequently (Line 20-21). Thread C
performs an immediate notification of event e (Line 25). If thread B is not already
waiting for it, the notification is lost. After the simulation the value of variable a

6

and b should be x % 2 and x / 2, respectively. Thus the assertion (2∗ b+a == x) is
expected to hold (Line 32). Nevertheless, there exist counterexamples, for example
the scheduling sequence CAB leads to a violation of the assertion. The reason is
that b has not been set correctly due to the lost notification.

b) IVL Example: Fig. 2 depicts the same example in IVL. As can be seen the
SystemC module is unpacked, i.e. variables, functions, and threads of the module
are now global declarations. The calls to wait and notify are directly mapped to
statements of the same name. The if-then-else block of thread A is converted to a
combination of conditional and unconditional goto statements (Line 7-12). Variable
x is initialized with a symbolic integer value (Line 2) and can have any value in the
range of unsigned int. The statement start on Line 25 starts the simulation.

In short, the IVL is kept minimal but expressive enough for the purpose of formal
verification. It aims to cover all benchmarks used by existing formal verification
approaches for SystemC. It would only take little effort to adapt these approaches
to support this IVL as their input language. That would lead to the availability
of a checker suite for SystemC once a capable front-end is fully developed. We
also refer to an IVL description as a SystemC design since both define the same
behavior. A grammar and a parser for the IVL are provided at our website http:

//www.systemc-verification.org/sissi.

4 Syntax and Semantics

In the following the structure of the IVL is described in a top-down approach. This
section first roughly describes how a program is structured. Subsequently, the follow-
ing subsections describe the individual statements (i.e. instructions), expressions,
and the language type system in more detail.

A program consists of a list of global declarations. These include variables,
events, functions, threads and updates. Both functions and threads/updates contain
a list of instructions. Statements use expressions and each expression can contain
subexpressions (which are themselves expressions). For the internal representation
of a program, it makes sense to use a tree structure. Fig. 3 shows a high-level
overview of the internal representation of an IVL program as an AST.

In terms of structure, threads, updates and functions are almost identical. How-
ever, they differ in terms of their simulation semantics. So threads and updates are
completely managed by the simulator. Unlike functions, they can not be called man-
ually from within the program. In addition, they do not have any return value or
accept parameters (a consequence of the fact that they can not be called manually).

A special function is main. It is the entry point of the IVL program (program
execution starts at main). In terms of simulation semantics, it differs from both
threads and functions. It is initially called automatically and can not be called
manually. It must not contain a blocking instruction. The function main must be
defined in each program. The actual simulation phase can be started within main
with the command start .

Variable declarations may be created (as the only declaration) both globally and
locally (i.e. within functions). Fig. 4 shows an example of the syntax for the existing

7

http://www.systemc-verification.org/sissi
http://www.systemc-verification.org/sissi

Statement

start

label

if-goto

goto

notify

wait_event

wait_time

assume

assert

puts

print

main
0..*

Update

0..*

Thread

0..*

Function

0..*

Declaration Event

Variable

Program
1..*

Figure 3: Top-level overview of the internal representation of the program as AST

declarations.

The individual statements of a function (or a thread) can be seperated either
by a semicolon or a new line. In the case of a newline there should not be two
statements in the same line. There can be any number of blank lines between
individual statements and declarations.

A program is divided into several scopes (visibility areas for declarations). It has
a global scpope and each function (or thread or update) opens a new local scope.
Statements within functions may access the global scope, but not the other way
around. All created declarations are added to the corresponding scope. Variables,
events, functions, threads and updates are managed in separate namespaces, and
it is always clear from the context which namespace to access if an identifier is to
be resolved. Thus, e.g. declare a variable and a thread in the same scope with the
same name, but it is not possible to declare two variables with the same name (in
the same scope).

4.1 Reserved Identifiers

The following identifiers are used internally as keywords, built-in statements, and
types, and should (or may be partially) not be used as identifiers for your own
declarations (e.g. variable or function declarations):

8

1 /* Define a global variable with type int,

name x and initial value 3 */

2 int x = 3

3 /* Events can only be global */

4 event e

5
6 /* A function declaration contains a name,

a return type and a list of arguments

*/

7 int gen(int a, int b) begin

8 /* Variables can also be defined inside

of function, the local variable

shadows the global variable with

the same name */

9 int x = a * 2

10 /* the result value has to be specified

explizitly using a return statement

*/

11 return x + b

12 end

13
14 /* Defines a thread named check */

15 thread check begin

16 /* Similar to a function, a thread also

contains a list of statements */

17 loop:

18 /* Blocks the thread execution until

notification of event e is

triggered */

19 wait e

20 assert gen(2, x) == 7

21 goto loop

22 end

23
24 thread clk begin

25 loop:

26 /* Blocks the thread execution for one

time step */

27 wait_time 1

28 /* Trigger immediate notification of

event e */

29 notify e

30 goto loop

31 end

32
33 main begin

34 /* Start simulation and run it for five

time steps */

35 start 5

36 end

Figure 4: Example program to illustrate the syntax for different declarations

Table 1: Reserved identifiers

event char short int long uchar
ushort uint ulong assert puts if goto
begin end assume thread main start wait
wait event delay wait time resume suspend signed unsigned

4.2 Statements

Statements (i.e. instructions) are the building blocks of execution. Unlike expres-
sions, they can not be nested. Instructions can be subdivided into the areas of
control flow control, event handling, simulation control, information output and
assertions. Fig. 5 shows the grammar of all available instructions.

The control flow can only be controlled as a combination of labels with condi-
tional / unconditional jumps. The simple goto represents an unconditional jump to
a label (unconditional jumps are always taken). In a conditional jump, the goto is
preceded by if with a condition that must be fulfilled for the jump to be executed.

〈Statement〉 ::= 〈Expression〉 ’=’ 〈Expression〉
| ’assert’ 〈Expression〉 〈String〉?
| ’assume’ 〈Expression〉
| ’suspend’ 〈Identifier〉
| ’resume’ 〈Identifier〉
| ’print’ 〈Expression〉
| ’puts’ 〈String〉
| (’wait_event’ | ’wait’) 〈Identifier〉

| (’wait_time’ | ’delay’) 〈Expression〉
| ’notify’ 〈Identifier〉 〈Expression〉
| ’goto’ 〈Identifier〉
| 〈Identifier〉 ’:’
| ’if’ 〈Expression〉 ’goto’ 〈Identifier〉
| ’start’ 〈Expression〉?
| ’return’ 〈Expression〉?

Figure 5: Instructions available in the IVL

9

The statement return represents a special unconditional jump. It terminates the
currently executing function and returns to the caller. Optionally, a return value
can be specified.

Goto statements allow to represent a more general control-flow compared to high-
level control structures. Therefore, they are a reasonable choice for an intermediate
representation that targets languages with goto support (such as C++). The well
known LLVM-IR as well as the CBMC verification backend are also based on goto
statements. Furthermore, this choice simplifies the back-end implementation as it
has no longer to handle (potentialy nested) scopes and can keep track of the active
statement in a function using a single index (i.e. instruction pointer).

The synchronization of threads is done via events. There are two basic operations
defined on an event: wait and notify. wait blocks the currently running thread on an
event. The blocking will be canceled as soon as the event is notified. A notification
is performed by the notify statement. In addition to the event, it also receives an
optional expression that specifies after how many simulation time steps the notifi-
cation of the event should be triggered. If no time is specified then the notification
will be immediate, with a time of zero a delta notification will be performed. The
individual simulation phases will be described in more detail in Section 5. By means
of the wait time instruction, a thread is blocked for the given simulation time (and
after the time has passed it becomes automatically runnable again).

The suspend statement suspends the given thread. A suspended thread is blocked
and thus will not run. If suspend is applied to the currently running thread, its
execution is interrupted and it is suspended. The resume statement removes the
suspension of the given thread. The effect is always delayed, so only applied in
the delta-notify phase. The instructions suspend and resume are independent of
the event handling mechanism, i.e. a thread can be blocked on one event as well
as suspended at the same time. Both effects have to be canceled for a thread to
become runnable again.

The instructions print and puts are used to output information (for example, to
understand the control flow). By means of print an expression is printed to stdout.
The statement puts prints the given string. These two instructions do not modify
the program state and thus can also be ignored in an implementation.

The actual simulation phase (see Section 5) is started with the start statement.
Optionally, a maximum number of executed simulation time steps can be specified.
Simulation will terminate once the maximum time is exceeded or no more thread is
runnable.

The assert instruction introduces an assertion. At runtime, a check has to ensure
that the given expression is valid. The possible values of a symbolic expression can
be restricted by using the assume instruction. The (boolean) condition passed to
assume is assumed to be valid for the entire further simulation process and thus
constrains all subsequent evaluations.

4.3 Expressions

Expressions are defined recursively. The foundation for the recursive definition are
the atomic expressions. Applying an operator to an existing expression returns again

10

〈Expression〉 ::= 〈Atom〉
| 〈Expression〉 ’||’ 〈Expression〉
| 〈Expression〉 ’&&’ 〈Expression〉
| 〈Expression〉 ’==’ 〈Expression〉
| 〈Expression〉 ’!=’ 〈Expression〉
| 〈Expression〉 ’<=’ 〈Expression〉
| 〈Expression〉 ’<’ 〈Expression〉
| 〈Expression〉 ’>=’ 〈Expression〉
| 〈Expression〉 ’>’ 〈Expression〉
| 〈Expression〉 ’+’ 〈Expression〉
| 〈Expression〉 ’-’ 〈Expression〉
| 〈Expression〉 ’*’ 〈Expression〉
| 〈Expression〉 ’/’ 〈Expression〉
| 〈Expression〉 ’%’ 〈Expression〉

| 〈Expression〉 ’&’ 〈Expression〉
| 〈Expression〉 ’|’ 〈Expression〉
| 〈Expression〉 ’^’ 〈Expression〉
| ’!’ 〈Expression〉
| ’-’ 〈Expression〉
| ’~’ 〈Expression〉
| ’&’ 〈Expression〉
| ’*’ 〈Expression〉
| ’(’ 〈Typ〉 ’)’ 〈Expression〉
| ’length’ 〈Expression〉
| ’new’ 〈Type〉 (’[’ 〈Expression〉 ’]’)?
| ’delete’ (’[”]’)? 〈Expression〉
| 〈Expression〉 ’[’ 〈Expression〉 ’]’

Figure 6: Overview of expression operators in IVL. The semantic corresponds to the
C++ operators with the same name.

〈Atom〉 ::= 〈Number〉
| 〈Identifier〉
| 〈Character〉
| 〈String〉
| 〈Identifier〉 ’(’ 〈Expression〉? (’,’
〈Expression〉)* ’)’

| ’false’
| ’true’
| ’?’ ’<’ 〈Type〉 ’>’
| ’?’ ’(’ 〈Type〉 ’)’
| ’@result’
| ’(’ 〈Expression〉 ’)’

Figure 7: Overview of atomic expressions. the lexical rules for identifiers, strings
and characters are similar to those of C++.

a valid expression. An overview of the existing atomic expressions is shown in Fig. 7,
the existing operators are listed in Fig. 6.

Both the semantics and the priority of the operators correspond to the same
named operators of the C ++ language. The length operator has no equivalent in
C++. It is only defined on arrays and as a result it returns the length of the given ar-
ray. Pointer operations including pointer arithmetic, index access and dereferencing
are supported as well.

To define a symbolic expression, an underlying primitive data type needs to be
specified. The symbolic expression can take any value from the range of values of
the underlying data type. During execution of the program, this value range can be
additionally restricted. This can be done implicitly (for example, by a conditional
jump) or explicitly via the assume statement. Fig. 8 shows an example of using
symbolic expressions.

Each expression is associated with three basic properties:

• Every expression has a type;

• A property that indicates if the expression be used on the left side of an
assignment 1 (lValue);

1An assignment can be a direct assignment, a variable initialization or a parameter transfer
during a function call

11

Table 2: Problems with nested blocking expressions

Compound expressions may block due to nested function calls. This can lead to a
more complex back-end implementation, since a single IP (instruction pointer) at
the statement level would be insufficient. For example, suppose a thread contains
a statement int x = f() + g(). So on the right side of the assignment is a nested
expression. If function call f is blocking, then the underlying thread would also be
blocked. However, resuming execution is no longer possible with a single IP because
the IP always points to a statement (rather than a subexpression within the state-
ment). However, the last executed statement was not fully completed because the
nested expression blocked. However, it is not saved how much of the expression has
already been processed and, above all, the results of the subexpressions are lost when
blocking. To deal with this limitation, a new expression has been added, @result.
This expression refers to the result of the last function call. By introducing new
local variables in combination with the @result expression, nested blocking function
calls can be unpacked, as shown in the following listing. This transformation can
be automatically performed by a front-end.

1 /* Assuming any of f or g can block (i.e.

perform a context switch), then the

expression execution will be

interrupted */

2 int x = f() + g()

3
4 /* The above statement can be re-written

as follows (which simplifies context

switch implementation) */

5 f()

6 int a = @result

7 g()

8 int b = @result

9 int x = a + b

Listing 1: Unpacking of nested blocking functions calls

• If the execution of the expression can block (i.e. lead to a context switch due
to function calls);

The type of an atomic expression is either predefined (e.g. the expression true has
the type bool) or can be determined directly without further dependencies (e.g. the
type of a number depends on the value range). The types of compound expressions
are formed using the operator rules. The exact formation rules for the types are
based on the type rules of the C++ language and can therefore be looked up in the
C++ standard [1].

Only references to memory areas are allowed on the left side of an assignment
(lValue). These include variables (local and global), dereferencing pointers, and
elements of an array. All other expressions may not appear on the left side of an
assignment. The generic term assignment refers to a direct assignment and a variable
initialization or a parameter transfer in a function call.

The IVL supports blocking instructions, i.e. context switches due to wait in-
structions. Expressions can not actually (directly) block. The only expression that
can block is the function call, because a function call executes the instructions of the
called function, which in turn can have a context switch. If a blocking instruction is
executed, then ultimately also the function call is blocked. Table 2 shows an exam-
ple. The property of whether an expression is blocking can be determined statically.
For example by simply assuming that a function with at least one blocking instruc-

12

1 main begin

2 /* Variable x is assigned a symbolic expression of type int */

3 int x = ?<int>

4 if x > 5 goto cont:

5 /* Add constraint to path condition */

6 assume x >= 2

7 /* The conditional goto also led to an extension of the path condition */

8 assert x >= 2 && x <= 5

9 goto done

10 cont:

11 /* is valid due to the conditional jump */

12 assert x > 5

13 done:

14 end

Figure 8: Example program that illustrates symbolic expressions

Table 3: Mapping of primitive data types. The bit-witdh can be configured to match
the C++ execution semantics of the underlying machine.

Type Bit-width C++/SystemC equivalent

char 8 char
short 16 short
int 32 int
long 64 long
uchar 8 unsigned char
ushort 16 unsigned short
uint 32 unsigned int
ulong 64 unsigned long
bool 1 bool
void void
event sc core::sc event
sc int N SystemC signed bitvector (configurable bit-width)
sc uint N SystemC unsigned bitvector (configurable bit-width)

tion may also be able to block. The function call then takes over the property of
the function. Composite expressions inherit the properties of the subexpressions.
To avoid dealing with blocking expressions in the back-end, which in turn simplifies
the implementation of context switches, we have added the @result expression as
discussed in the example in Table 2. A front-end can automatically perform the
required transformation.

4.4 Type system

The type system can also be defined recursively. The foundation is formed by the
basic types. Existing types can be used to define array and pointer types (compound
types). Fig. 9 shows an overview of the type system.

The existing primitive data types can be found in Table 3. They are based on
the primitive data types of C++. Type deduction and implicit propagation rules
are based on the corresponding C++ semantics. The specified bit-width and the
resulting range of values are configurable and can be adapted to the underlying
machine architecture as necessary to conform to the C++ execution semantics.

13

Integral

ulong uint ushort uchar long int short char

Primitive

bool void sc_uint sc_int event

Type

Pointer

1

Array

1

Figure 9: Type system overview

5 Execution Semantics

The simulation semantics of SystemC (see [6]) is precisely followed by the IVL
primitives. Essentially, if multiple IVL threads are runnable, one of them will be
non-deterministically selected. This thread is then executed non-preemptively until
it finishes or suspends itself by calling wait. This causes a context switch back to the
scheduler, which can again select another runnable thread. If no runnable thread
is available, the scheduler performs pending delta or timed notifications accordingly
to activate waiting threads. In the following we provide more details on the IVL
simulation semantics.

The basis of the simulation phase are the threads. Threads are completely man-
aged by the simulator back-end, they can not be called manually from the program.
The execution of a thread is not preemptive, i.e. a running thread is never inter-
rupted by the simulator, it must itself execute a blocking instruction. The inter-
mediate language thus defines cooperative multitasking for executing the threads.
Each thread is in one of three states: runnable, blocked, or terminated. A runnable
thread can be executed by the simulator. It switches to the state blocked when it
executes a blocking instruction (waiting for an event or for time or suspends itself)
or is suspended by another thread. The blocking is canceled when the expected
event occurs. Initially, all threads are runnable following the simulation semantics
of SystemC. Threads are only considered for execution once the simulation is started
by the start function. A thread terminates if all its statements have been executed.
The thread state terminated can not be left again.

The execution of the IVL program starts with the function main. As soon as
the start statement is executed, execution transfers from the initialization phase to

14

Figure 10: Overview of the thread states

the simulation phase. The function main is blocked and the threads are considered
for execution. The simulation phase ends once no more thread is runnable, i.e. all
of them are blocked or terminated and no more event to unblock any of the threads
is pending. The IVL simulation semantics closely follow the simulation semantics
of SystemC. For example see [4] for an short overview of the SystemC simulation
semantics. Essentially, the simulation phase can be subdivided into four sub-phases:

1. Evaluation: This is the initial phase of the start-initiated simulation phase.
As long as there are executable threads, one of them is selected and executed
until it blocks. If there are no more executable threads, the simulation goes
into phase two.

2. Update: The update functions are executed. These updates have been re-
quested during the evaluation phase (or the startup phase, if the update phase
is executed once as part of the initialization phase). The evaluation phase
together with the update phase corresponds to a delta cycle of the simulation.

3. Delta-Notify : In this phase, all delta notifications are performed. This will
notify the associated events. This causes threads that were blocked on these
events to return to state runnable. If there is at least one runnable thread at
the end of this phase, then the simulation goes into phase one, otherwise in
phase three.

4. Advance-Time: This phase increases the current simulation time. For this
purpose, the minimum time of all delayed events and time-blocked threads
is computed. The current simulation time is incremented by the calculated
value. If the simulation exceeds the optionally specified maximum time, then
the simulation is finished. All threads who finished their waiting time are
changed to state runnable and all events whose delay has expired are notified,
which in turn can unblock waiting threads. If the number of runnable threads
is empty at the end of this phase, then the simulation phase is terminated,
otherwise it goes into phase one.

As soon as the simulation phase is ended, the execution of the program enters
the final cleanup phase. All remaining statements of main will be executed here.
Then the program execution is finished.

15

Figure 11: Simulation starts with the initialization phase and performs one or more
cycles of evaluation, update and delta-/timed-notifications until the maximum sim-
ulation time is reached or no more thread is runnable after performing notifications.

6 Example Translation: SystemC FIFO in IVL

A SystemC design has first to be translated into an IVL program before formal
verification is applied. For illustration, in this section we translate an example
SystemC program into the IVL.

The chosen SystemC example program is part of the SystemC distribution. It
is located in the examples folder under the name simple fifo. Fig. 12 shows the
program in a slightly shortened form. The cuts are exclusively syntactic in nature,
both programs are semantically equivalent. The corresponding translated version in
IVL is shown in Fig. 13.

6.1 FIFO Behavior Description

Essentially, the program consists of three components: a producer (producer), a
consumer (consumer) and a fifo. The producer produces individual characters and
writes them into the fifo. The consumer removes them from the fifo and outputs
them on the standard output. The fifo represents a communication channel between
producer and consumer. It can only hold max many characters, then it is full.
Producer and consumer thus alternate their access if the fifo is full or empty.

The fifo provides a total of four operations. The functions read and write a take
or add a character, respectively. The num available function specifies how many
characters are currently present. A call to reset resets the fifo to the initial state.

16

1 #include <systemc.h>
2
3 struct write if : virtual public

sc interface {
4 virtual void write(char) = 0;
5 virtual void reset() = 0;
6 };
7
8 struct read if : virtual public

sc interface {
9 virtual void read(char &) =

0;
10 virtual int num available() =

0;
11 };
12
13 struct fifo : public sc channel,

public write if, public
read if {

14 fifo(sc module name name) :
sc channel(name),
num elements(0),
first(0) {}

15
16 void write(char c) {
17 if (num elements == max)
18 wait(read event);
19
20 data[(first + num elements)

% max] = c;
21 ++num elements;
22 write event.notify();
23 }
24
25 void read(char &c) {
26 if (num elements == 0)
27 wait(write event);
28
29 c = data[first];
30 −−num elements;
31 first = (first + 1) % max;
32 read event.notify();
33 }
34
35 void reset() { num elements

= first = 0; }
36 int num available() { return

num elements;}
37
38 private:
39 enum e { max = 10 };
40 char data[max];
41 int num elements, first;
42 sc event write event,

read event;
43 };
44
45 struct producer : public

sc module {
46 sc port<write if> out;
47 SC HAS PROCESS(producer);
48
49 producer(sc module name

name) :
sc module(name) {

50 SC THREAD(main);
51 }
52
53 void main() {
54 const char ∗str = ”Visit

www.systemc.org and
see what SystemC can
do for you today!\n”;

55 while (∗str)
56 out−>write(∗str++);
57 }
58 };
59
60 struct consumer : public

sc module {
61 sc port<read if> in;
62 SC HAS PROCESS(consumer);
63
64 consumer(sc module name

name) :
sc module(name) {

65 SC THREAD(main);
66 }
67
68 void main() {

69 char c;
70 cout << endl << endl;
71
72 while (true) {
73 in−>read(c);
74 cout << c << flush;
75
76 if (in−>num available()

== 1)
77 cout << ”<1>” <<

flush;
78 if (in−>num available()

== 9)
79 cout << ”<9>” << flush;
80 }
81 }
82 };
83
84 struct top : public sc module {
85 fifo ∗fifo inst;
86 producer ∗prod inst;
87 consumer ∗cons inst;
88
89 top(sc module name name) :

sc module(name) {
90 fifo inst = new

fifo(”Fifo1”);
91
92 prod inst = new

producer(”Producer1”);
93 prod inst−>out(∗fifo inst);
94
95 cons inst = new

consumer(”Consumer1”);
96 cons inst−>in(∗fifo inst);
97 }
98 };
99

100 int sc main (int argc , char
∗argv[]) {

101 top top1(”Top1”);
102 sc start();
103 return 0;
104 }

Figure 12: Fifo in SystemC: Is semantically equivalent to Fig. 13

Initially, the fifo is empty, so it can still hold max many characters.

The function read blocks the underlying thread on the event write event if the
fifo is empty. Likewise, write blocks on the event read event if the fifo is full. If
a character is successfully read or written, the associated event is notified and any
thread blocked on it can be run again.

Producer and consumer are realized as threads. Initially, they are both exe-
cutable. They are executed in alternating order because thread execution is not
preemptive (cooperative multitasking is used).

The producer notifies the consumer, writes max many characters into the fifo
and then executes the blocking instruction wait write event. Now the producer is
blocked and the consumer is able to run. Then2 the consumer notifies the producer,
removes all max characters from the fifo and blocks with the execution of wait
read event. Now the consumer is blocked and the producer is able to run again.

As soon as the complete string has been written, the creator thread exits. The
consumer removes the last produced characters and is blocked himself, since the fifo
is now empty. Thus, all (both) threads are blocked, so there is no more executable
thread, so the simulation execution is finished.

2If the execution would start with the consumer, then he would block himself, because initially
the fifo is empty. Then the producer is called and notifies the consumer, etc.

17

1 //////// FIFO BEGIN //////
2 uint max = 10
3 char data[max]
4 int num elements = 0
5 int first = 0
6 event write event
7 event read event
8
9 void write(char c) begin

10 if num elements != max goto
cont

11 wait read event
12 cont:
13
14 data[(first + num elements)

% max] = c
15 num elements =

num elements + 1
16 notify write event
17 end
18
19 void read(char ∗c) begin
20 if num elements != 0 goto

cont
21 wait write event
22 cont:
23
24 ∗c = data[first]

25 num elements =
num elements − 1

26 first = (first + 1) % max
27 notify read event
28 end
29
30 void reset() begin
31 first = 0
32 num elements = 0
33 end
34
35 int num available() begin
36 num elements
37 end
38 //////// FIFO END //////
39
40 thread consumer begin
41 char c
42 loop:
43 read(&c)
44 print c
45 if num available() != 1

goto cont1
46 puts ”<1>”
47 cont1:
48 if num available() != 9

goto cont2
49 puts ”<9>”

50 cont2:
51 goto loop
52 end
53
54 thread producer begin
55 char ∗str = ”Visit

www.systemc.org and
see what SystemC can
do for you today!\n”

56 uint len = length(str) − 1 /∗
strings are zero
terminated ∗/

57
58 uint idx = 0
59 loop:
60 write(str[idx])
61 idx = idx + 1
62 if idx < len goto loop
63 end
64
65
66 main begin
67 /∗ simulation stops once no

more thread is runnable
∗/

68 start
69 end

Figure 13: Fifo in IVL: Is semantically equivalent to Fig. 12

6.2 Translation to IVL

The architecture of SystemC program is created at runtime (i.e. dynamically) by
executing the elaboration phase. Modules are instantiated, bindings performed and
the individual threads are registered at the simulation kernel. Then the simulation
phase is started. The elaboration phase step is is omitted for the IVL. Here the
architecture is already statically provided.

Thus, when translating a SystemC program, it must be determined which threads
are available in the SystemC design in order to map them to IVL threads. In this
example, two threads are used, one for the producer and the consumer. The fifo
does not use threads, it is only used for communication between the creator thread
and the consumer thread, but only uses normal functions. All three components are
realized as classes. Classes are not supported by the IVL. Accordingly, all attributes
(methods and variables) of a class are unpacked during the translation step. A
unique name prefix might be added in this translation step to avoid name clashes
due to overloaded functions and mapping all functions into the global namespace. In
this case, it is not necessary because the names are also unique outside the class. A
class method can be mapped to either a function or a thread. In this case, producers
and consumers are mapped to threads and the fifo to normal functions.

The instantiation of the top-level module and the binding of ports to interfaces is
omitted in the IVL, because the assignments are already given by the static structure
of the program, i.e. the architecture obtained from a SystemC front-end.

The individual functions (as well as threads 3) can be straightforwardly trans-
lated because the syntax (and also semantics) of the IVL operations is based on
C++. Mainly it is required to map loops and conditional statements are to a
combination of goto and labels, and also map event handling functions are to the
keywords provided. This is necessary because events in SystemC are implemented

3Similar to functions, threads also contain a list of instructions. However, they have a simplified
prototype, since they do not take any arguments.

18

as structures (structures are not supported by the intermediate language).

7 References

[1] ANSI and ISO. C++ Standard - ANSI ISO IEC 14882 2003, 2003.

[2] D. Black, J. Donovan, B. Bunton, and A. Keist. SystemC: From the Ground Up.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2nd edition, 2009.

[3] D. Große and R. Drechsler. Quality-Driven SystemC Design. Springer, 2010.

[4] D. Große, H. Le, and R. Drechsler. Proving transaction and system-level prop-
erties of untimed systemc tlm designs. In MEMOCODE, pages 113–122, 2010.

[5] T. Grotker. System Design with SystemC. Kluwer Academic Publishers, Norwell,
MA, USA, 2002.

[6] IEEE. IEEE Standard SystemC Language Reference Manual. IEEE Std. 1666,
2011.

[7] Hoang M. Le, Daniel Große, Vladimir Herdt, and Rolf Drechsler. Verifying
systemc using an intermediate verification language and symbolic simulation. In
Proceedings of the 50th Annual Design Automation Conference, DAC ’13, pages
116:1–116:6, New York, NY, USA, 2013. ACM.

19

	Introduction
	Background on SystemC
	SystemC Simulation Semantics

	Overview
	Syntax and Semantics
	Reserved Identifiers
	Statements
	Expressions
	Type system

	Execution Semantics
	Example Translation: SystemC FIFO in IVL
	FIFO Behavior Description
	Translation to IVL

	References

