Benchmark Description

In the pressure benchmark [1] a thread increments a counter while another thread guards the counter
from exceeding a maximum value. However, there exists some thread interleavings such that the condition
is violated. The pressure-safe program limits the simulation time to ensure that the violation does not
occur. The threads are effectively non-interfering most of the time as [1] has already observed. However,
detecting this non-interference is very difficult, for both static POR as well as dynamic POR, because a
read-write dependency exists. A stateful search however can avoid re-exploration of the equivalent states.
The variants pressure-sym, pressure-sym2 and pressure-sym.nb additionally use symbolic values, more
counter variables and an unbounded simulation, respectively.

The symbolic-counter benchmarks similar to the pressure benchmark family have an increment and guard
thread to ensure a counter variable stays within a predefined range. The counter is initialized with a
symbolic variable and is regularly reset during the computation. Another thread performs synchronization
and controls simulation time.

The buffer program fills an array using multiple threads and then checks the result. All threads write to
a different memory locations, thus they are effectively non-interfering. It is based on the buffer-ws-pX
benchmark from [5] and has been modified to run without a simulation time limit. Consequently, it has a
cyclic state space and cannot be verified with a stateless method.

The rbuf benchmarks perform an unbounded simulation that modifies a 32 bit unsigned int value by
moving its bits in each step. The principle using two threads and a 8 bit value is shown in Fig. 1. This
principle is naturally extended to 32 bit values and four threads (rbuf-4 and rbuf2-4). The value is
initialized symbolically and in each step checked that the number of high bits is equal before and after
each bit rotation.

The condition-builder runs indefinitely but has a finite state space, since every possible execution path
runs into a cycle. In this case, the program will repeat its behavior after k = 8 or kK = 16 steps. Essentially,
the program manages a boolean condition b = True and a symbolic integer n = x1, which is initially
constrained to be in the range {0, ...,k — 1}. The thread C repeats the following behavior indefinitely: it
runs for k steps and then verifies the constructed condition. In each step C notifies the threads A and
B. The threads A and B will update the condition b in each step ¢ (starting with 0, ending with k& — 1),
where i # [(k—1)/2] and i # [(k —1)/2], to either (A) bA (n #4) or (B) bA (n# (k—1—1)). So bi+1
will have either the new value b; A (n #i)A(n# (k—1—14)) or b; A(n # (k—1—14)) A(n # i), depending
whether 225 or 24, s executed. Regardless of the scheduling decision, the same terms will be added to

b, but they appear in different orders. All terms can be arbitrarily rearranged since the logic and operator
is commutative.

The toy-sym, pc-sfifo-sym-1 and pc-sfifo-sym-2 benchmark respectively are based on the toy, pc-sfifo-1
and pc-sfifo-2 benchmarks from [2]. The concrete initial values have been replaced with symbolic ones.
The kundu benchmark and its variants are based on [4], and the simple-fifo benchmark family appeared
in [3].

b7 | b6 | b5 | b4 b3 | b2 | bl | b0 b7 | b6 | b5 | b4 b3 | b2 | bl | b0
"""""""" I i R i
--------------------------------------- 2
b3 | b2 | bl | b0 b7 | b6 | b5 | b4 b7 | b2 | bl | bO b3 | b6 | b5 | b4

Figure 1: The rotating (bit-) buffer benchmark is available in two configurations rbuf and rbuf2. In every
time step a new value is computed based on the current value of the buffer. The left figure shows the
principle operation of the rbuf benchmark and the figure on the right for the rbuf2 benchmark.

References

[1] N. Blanc and D. Kroening. Race analysis for SystemC using model checking. TODAES, 15(3):21:1-
21:32, June 2010.

[2] A. Cimatti, I. Narasamdya, and M. Roveri. Software model checking SystemC. TCAD, 32(5):774-787,
2013.

[3] D. Grofie, H. M. Le, and R. Drechsler. Formal verification of abstract SystemC models. In B. Becker,
V. Bertacco, R. Drechsler, and M. Fujita, editors, Algorithms and Applications for Next Generation
SAT Solvers, number 09461 in Dagstuhl Seminar Proceedings, 2010.

[4] S. Kundu, M. Ganai, and R. Gupta. Partial order reduction for scalable testing of systemc tlm designs.
In DAC, pages 936-941, 2008.

[5] H. M. Le, D. Grofie, V. Herdt, and R. Drechsler. Verifying SystemC using an intermediate verification
language and symbolic simulation. In DAC, pages 116:1-116:6, 2013.

